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INVESTIGATION OF ACID PRODUCTION, LEACHING, AND TRANSPORT
OF DISSOLVED METALS AT AN ABANDONED SULFIDE TAILINGS
IMPOUNDMENT: MONITORING AND PHYSICAL PROPERTIES

By B. M. Stewart,’ B. C. Williams,? and R. H. Lambeth'

ABSTRACT

Researchers at the U.S. Bureau of Mines conducted a long-term groundwater monitoring and site

characterization program at an abandoned 10-ha, acid-producing, copper-gold tailings impoundment in
north-central Washington State. The purpose was to investigate contaminant release and transport, and
attenunation mechanisms in the tailings, sediments below the tailings, and gravels downgradient of the
impoundment. This report summarizes the monitoring results and physical properties of the tailings,
the sediments below the tailings, and the groundwater system associated with the tailings.
] Water samples from the vadose and saturated zones of the impoundment were analyzed for 15
Il constituents. Concentrations of the same constituents were determined in water samples up to 3 m
: beneath the impoundment and in the shallow colluvium and deep bedrock at 76, 335, and 550 m
downgradient and 168 m upgradient,

Constituent concentrations within the tailings are quite variable and are influenced by pH, depth of
oxidation, grain-size differential (surface area), hydraulic gradient, groundwater mixing, and the presence
of hardpan layers, carbonaceous material, and organic matter. Most of the metal constituents decreased
to background or near-background concentrations in the farthest downgradient well.

'Mining engineer.
2Research civil engineer.
Spokane Research Center, U.S. Bureau of Mines, Spokane, WA.




INTRODUCTION

Cleanup of inactive mining-related sites and protection
of the environment during current mining is a significant
issue in the United States. The control of water pollution
from mining and milling wastes is addressed under the
Clean Water Act, which regunlates the discharge of pollut-
ants into surface waters; the Resource Conservation and
Recovery Act (RCRA), which classifies the hazard poten-
tial of wastes; and the Comprehensive Environmental
Response Compensation and Liabilities Act (CERCLA),
which was written to guarantee the cleanup of sites not
covered by other laws.

It has now been recognized that many inactive or
abandoned mine sites are sources of contaminated water.
Some of these mines have been placed on the National
Priorities List under CERCLA and the Superfund Amend-
ment and Reauthorization Act.

In 1988, the U.S. Environmental Protection Agency
(EPA) significantly revised guidance documents and ac-
tivities and prepared a National Contingency Plan that
encourages and supports the use of innovative treatment
technologies at Superfund sites. One provision of the plan
includes selecting permanent, long-term remedies, with the
highest priority for treatment to be given to "liquids, other
highly mobile materials, and highly concentrated toxic
compounds" (EPA, 1988).

There are currently very few, if any, cost-effective
technologies to clean up surface and/or ground waters that
have been contaminated by mining and milling wastes at
inactive sites. Because of the complexity of the chemical
and physical factors that contribute to water contamination
from mining wastes, researchers at the U.S. Bureau of
Mines (USBM) are conducting long-term studies on the
generation, mobilization, and fate of heavy metals and
other contaminants in these wastes. The results will be
used to aid in the development of remediation strategies
and to identify additional data needed for remediation.

The generation of acid and subsequent metal dissolu-
tion in tailings impoundments is a complex biogeochemical
process involving the oxidation of pyrite and other sulfides
and includes several inorganic reactions that depend upon

such factors as pH, oxidation-reduction potential (Eh),
oxygen availability, and the availability of other oxidants,
such as ferric iron (Fe®*). Although oxygen initiates
sulfide oxidation, at low pH levels, the important rate-
determining step(s) may involve other oxidants, such as
ferric iron instead of oxygen (Nordstrom, 1982). Sulfide
oxidation may also be directly or indirectly catalyzed by
the presence of bacteria of the Thiobacillus genus and by
other species of sulfur- and/or iron-oxidizing bacteria.
Sulfides that are oxidized by oxygen and other oxidants are
the source of sulfates and H* (acid) in solution. The acid
dissolves and is neutralized by carbonates, aluminosilicates,
and existing oxides, and by secondary aluminum hydroxides
(Dubrovsky and others, 1985). Sulfates and hydroxide
minerals form as precipitates when they reach geochemical
safuration, depending upon the reaction kinetics. These
reactions may occur near the sulfide source as well as
downgradient from the point of sulfide oxidation. The
degree of moisture saturation can influence the primary
oxidation mechanism. A study by Taylor and others
(1984) indicates that oxidation of sulfides in anaerobic,
water-saturated environments occurs primarily by chemical
oxidation pathways, whereas oxidation of sulfides in well-
aerated vadose zone environments occurs mainly by
microbially mediated pathways.

This Report of Investigations (RI) describes a research
conducted at a specific mine waste site. It includes site
characterization and results of analyses of water quality
data collected in the vadose zone, the saturated zone, the
sediments below the waste, the shallow unconsolidated
aquifer, and deep zones of weathered bedrock at various
distances downgradient from the waste. The primary
objectives of this investigation were (1) to determine the
physical property characteristics of the tailings and
associated formations that affect acid production, leaching,
and transport of dissolved metals from the waste and (2)
to report existing water quality and other site-specific
geological, physical, and hydrologic data that may be used
for future site remediation work.

SITE DESCRIPTION AND SELECTION

SITE CRITERIA

The research objectives led to selection criteria for a
tailings impoundment. Ease of access to the impoundment
and adjacent watersheds were primary considerations. The
following were also important:

1. A phreatic surface within the tailings profile, pref-
erably in hydraulic connection with a shallow aquifer. This

criterion permits the vadose zone to be compared with the
saturated zone. If the tailings were not separated from the
underlying material with a liner, the direct contact would
permit analysis of free drainage, as well as upwelling,
depending upon hydraulic conditions.

2. A vadose zone no less than 2 m thick to ensure that
there was an adequate thickness to identify changes in
characteristics such as oxygen content.



3. A significant amount of sulfides and few carbonates,
to ensure that the tailings were acid producing. Such a
condition is representative of most sulfide mine wastes.

4, Tailings and water slurry yielding acidic pH values,
which would also support the belief that the tailings were
acid producing,

5. An impoundment where there had been relatively
little disturbance since the original deposition of the
tailings. Postdepositional reworking of tailings might
destroy or confound earlier distributions of certain physical
or chemical properties with respect to depth. Because the
kinetics of some oxidation reactions are slow, physical and
chemical characterizations should most closely approxi-
mate "equilibrium" (given age, location, and climate) if the
tailings were undisturbed.

SITE DESCRIPTION

After visits to many different sites, the site chosen for
this research was an abandoned gold and copper tailings
impoundment on the eastern slope of the Cascade
Mountains in Washington State. The site receives an
average of 370 mm of precipitation per year. Tempera-
tures range from -36 to 41 °C, and the annual average is
7 °C. Figure 1 is a low-angle photograph of the research
site looking down the valley to the southeast. The im-
poundment measures approximately 200 by 46 m, with an
average depth of 6.1 m and a surface elevation of about
567 m above sea level. It contains about 33,100 m?® of
material. The phreatic surface, which varies spatially and
temporally, is approximately 3 to 5 m below the ground
surface. A cross section of the impoundment is shown in
figure 2.

The valley in which the impoundment is located is a
surface expression of a northwest-trending, near-vertical,
tension-gash fault in midacidic metavolcanic bedrock. The
valley floor is covered with a veneer of remnant gravel,
and numerous calcarcous and carbonaceous lake beds,
some now dry, dot the floor. The tailings were deposited
on top of one of these lake beds and next to a small pond.
The upper meter of the silty lake sediments below the
tailings is particularly rich in organic material, but the
lateral extent of these sediments is not known. The
geology of the valley in which the tailings impoundment
was constructed is discussed in more detail by Lambeth
(1992).

Mill records indicate that copper and zinc minerals
were recovered by a conventional dual-circuit flotation
system maintained at pH 10 or higher by the addition of
lime. The mill was operating and depositing tailings into
the impoundment between 1939 and 1953, The mined ore

body, which is several miles away, is a chalcopyrite-
sphalerite deposit containing gold and may be volcanogenic
or (contact) metamorphic in origin. Mineralogical optical
analysis of tailings from the chosen site indicated that
tailings composition is 95 pct gangue minerals (primarily
quartz and plagioclase) and 5 pct sulfide minerals (e.g.,
pyrite, chalcopyrite, sphalerite, and trace amounts of
galena). No carbonates from the tailings were observed.
Slurries composed of surface tailings mixed with deionized
water yielded pH values in the range of 4 to 5. With the
exception of one 2-m-deep pit (presumably dug in recent
years to determine whether it would be economical to
remill the tailings), these tailings have remained un-
disturbed since they were deposited.

The gravel aquifer under the tailings is recharged from
bedrock sources and local precipitation. The flow direc-
tion is from the topographic high at the northwest end of
the site toward the topographic low at the southeast end.
On the basis of upward vertical gradients between the
fractured bedrock and gravel aquifer at the locations of
wells BKG, M2, and M5 (figure 3), the base flow in the
gravel appears to be locally augmented at certain times of
the year by upward groundwater discharge from the
fractured bedrock. This groundwater probably discharges
into the gravel and flows under, around, and possibly into
the tailings and the underlying silt. However, at well M4
and in the fall at well M2, the vertical gradicnt is down-
ward, indicating possible leakage from gravel to bedrock.
Precipitation infiltrates the tailings impoundment and may
possibly flow through the underlying deposits of calcareous
and carbonaceous silt and enters the gravel aquifer. As
contaminated tailings pore water leaves the tailings, a
series of processes occur that influence contaminant con-
centrations downgradient. These include hydrogeochem-
ical changes, dilution, dispersion, and advection.

There may be some tendency for infiltrating water to
move horizontally when it encounters abrupt zones of
relatively lower hydraulic conductivity. This horizontal
flow may occur along layered heterogeneities in the tail-
ings, such as hardpan, and also at the contact between the
tailings and underlying organic matter and silts. If sub-
stantial horizontal flow does occur at the base of the
tailings, pore water may eventually enter the colluvium at
the edges of the impoundment, where the lake sediments
stop. These sediments may actually have been removed in
the vicinity of the downgradient end of the impoundment
when the dam was constructed; if so, downward drainage
into the colluvium would be enhanced just upgradient
of the dam. Evapotranspiration may account for some
portion of the water lost from the tailings impoundment.
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MONITORING WELL DRILLING AND INSTALLATION

Forty-five polyvinyl chloride (PVC) and BAT Envitech,
Inc., groundwater samplers for monitoring wells were
installed at the field test site and are described in table 1.
A plan view of the research site and the monitoring well
locations is shown in figure 3. The well completion re-
ports are given in appendix A.

Table 1.—Description of wells

No.of  Type Description Location
wells
11 .... PVC Pwells.......... Saturated zone of tail-
ings, colluvium, and
sediments below
tailings.
14 .,... BAT Bwells.......... Vadose and saturated
zone of tailings.
3..... PVC  BKG wells: multiple  Upgradient colluvium
completions in one  and bedrock.
hole,
17 .... PVC Mwells: multiple Downgradient collu-

completions in five vium and bedrock.

holes.

P WELLS IN AND BELOW TAILINGS

The P wells in and below the tailings were installed
using the hollow-stem auger method, With this method,
holes are drilled to the desired depth with augers having
an outside diameter of 20.3 cm and an inside diameter
of 8.573 cm. The PVC casing is lowered down the inside
hollow portion of the augers and the augers are retrieved,
leaving the casing in place.

The P wells themselves consist of schedule 40 PVC pipe
with an inside diameter of 3.18 ¢cm and 61-cm-long bottom
sections perforated with 0.05-cm slots. As much as
possible, all wells installed after 1987 in the saturated zone
of the tailings or below the tailings were installed ac-
cording to the Minimum Standards for Construction and
Maintenance of Wells established by the Washington State
Department of Ecology (WSDOE, 1988). Because of the
granular nature of the tailings, filter packs were not used,
and the saturated tailings were allowed to cave around and
above the perforated section (matural completion). A
bentonite plug was installed from the caved-in portion to
about 130 cm below the surface. A 122-cm-long protective
cover with a locking cap was placed over the PVC pipe
and grouted in place. Once in place, the wells were al-
lowed to stabilize for 1 week and then developed. Devel-
opment consisted of surging and pumping until the water
was relatively clear. After development, dedicated 0.95-cm
tubing was installed in each well for sampling.

To determine contaminant concentrations below the
tailings, wells P3A, P3B, and P3C (figure 3) were drilled
to 6.4 m (about 30 cm below the tailings), 5.8 m (base of
the tailings), and 7 m (about 90 cm below the tailings),
respectively. The 61-cm perforated section of well P3A
was placed at the interface between the tailings and the
organic-rich layer at the top of the lake sediment, with the
upper half of the perforated section in the tailings and the
lower half in the organic-rich layer. The perforated
section of well P3B was completed in the tailings base, and
the perforated section of well P3C was completed in the
silt below the organic-rich layer. Well P3 was completed
at 9.1 m, approximately 3 m in the silt below the tailings
and below the organic-rich layer and just above the
underlying gravel.

The depths of the P wells are shown in table 2 and are
measured from ground level to the bottom of the 61-cm-
long perforated section. Also shown in table 2 are the
completion media and the sampling method for each well.
Well P7 (figure 3) never contained water and therefore is
not considered in this RI.

B WELLS IN TAILINGS

Also shown in table 2 are the depths, completion
media, and sampling method for the B wells. Installation
of the BAT samplers was done according to Petsonk
(1985). The BAT sampler was chosen as the water and
pressure sampling apparatus for the vadose zone and some
locations in the saturated zone, This instrument operates
in a manner similar to a suction lysimeter or tensiometer.
It consists of a tip with a cylindrical porous filter. The
porous filter chamber is topped by a septum, and the unit
is installed downhole at the end of an access tube. Water
sampling vials or a pressure transducer are fitted with a
hypodermic needle connection. When the sample housing
or transducer is lowered downhole, a spring-loaded ap-
paratus pierces the septum to establish hydraulic con-
nection with the tailings material. A cross section of the
BAT sampler is shown in figure 4.

The BAT sampler was used in this study because it
prevents exposure to air during the lengthy sampling
process. At one sampling location in the vadose zone, it
took at least 12 h to yield a 40-mL sample. Exposure to
air for 12 h would have risked the possibility that great
changes could take place in iron chemistry.

To sample liquids in the vadose zone, BAT samplers
with ceramic tips having a pore size of 1 to 2 pm were
installed. The small pore size of the ceramic permits
liquid samples to be withdrawn from the vadose zone
according to the principles of capillarity because the pore
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size is comparable to that of the fine-grained tailings.
Prior to installation, the ceramic tips were boiled in
deionized water to force all gas from the pore spaces.
They were then transported to the site in a bucket of
water so they would remain saturated. The ceramic tips
were pushed (with a mobile drill rig) to the desired depth
immediately after being removed from the bucket in order
to establish good hydraulic contact with the fine-grained
tailings. Subsequent water samples have not shown any
large particles, which indicates that the installations were
successful, that is, that none of the ceramic filters have
cracked. After 1 week, considered sufficient time for
hydraulic contact to develop between tip and tailings,
multiple-tip volumes were drawn through the tips to flush
out deionized water with tailings pore water. One dis-
advantage of the BAT samplers was that at 61 cm, the tips
became desaturated a few months after installation, and
water samples could not be obtained, Consequently, wells
B1-2¢ and B2-2¢ were not used. Gas samples, however,
were obtained from wells B1-2p and B2-2p.

Table 2.—Monitoring wells in and below tailings!

Well ID? Depth, m Completion media
Pl o 49 Organic/gravel (BT).3
P2 ............ 8.7 Gravel (BT).
P2A ... ... 4.9 Saturated tailings.
P3 oo 8.9 Saturated volcanic ash (BT).
P3A ...t 6.5 Organic layer (BT).
P3B ........... 5.9 Saturated tailings base.
P3C .....ovvun 7.1 Saturated ash/organic (BT).
P4 ............ 4.6 Saturated tailings.
PS5 ooty 4.4 Fluctuation zone.*
PE vovivin 5.0 Saturated tailings.
Bi-2........... 0.6 Vadose tailings.
Bl-4........... 1.2 Vadose tailings.
Bl1-7....... .00, 2.1 Capillary zone.
B1-16 .......... 4.9 Saturated tailings,
B22.,.......... 0.6 Vadose tailings.
B24........... 1.2 Vadose tailings.
B28........... 24 Vadose tailings.
B2-16.......... 4.9 Saturated tailings.

Wells P1 through P& were sampled with a vacuum pump;
wells B1-2 through B2-16 were sampled with the BAT sampler.

*The first part of the label is the sample location, and the
second part following the hyphen is the sample depth in feet from
ground level,

3BT indicates the completion media are at the base of the
tailings or below the tailings.

*The fluctuation zone refers to that zone through or within
which the water table fluctuates from its highest point to its lowest
point in any given year.

Thermoplastic tips with larger pore sizes were installed
to collect water samples from the saturated zone. A small
pore size is not required if water is being sampled at pos-
itive pressure. The thermoplastic tips did not require

saturation prior to installation because they were installed
below the water table, and their large pore size permitted
water to displace air freely when suction was applied.

BKG AND M WELLS UPGRADIENT AND
DOWNGRADIENT OF TAILINGS

Monitoring wells were installed upgradient of the
tailings to determine water quality before the water had
been influenced by the tailings and downgradient of the
tailings to determine water quality after the water had
been influenced by the tailings. The five downgradient
wells (M wells) were drilled on pads leveled by a bull-
dozer. The pads were constructed perpendicular to and
across the downgradient surface drainage. All the M wells
were multiple completions with PVC casing at two or
three different depths in each well. The shallow M wells
(M1 through M4) were drilled using the downhole air-
hammer method, and the deep M well (M5) and up-
gradient well (BKG) were drilled using the air rotary
method. In both methods, temporary casing was installed
through the gravels. Forced air was used to remove the
cuttings.

After reaching the desired depth, the holes were flushed
with air until the discharged water became relatively clear.
Once this initial development was completed, the first
monitoring well (schedule 40 PVC pipe with a 61-cm
perforated section) was set, and a filter pack of 20/30
silica sand was placed around and above the perforated
section. Next, a bentonite plug was placed above the filter
pack by slowing pouring bentonite chips in the annulus
between the casing and the PVC pipe. This procedure
was repeated for the second and third wells in the multiple
completion. The temporary casing was pulled after the
monitoring wells were set in place. After the drill was
moved off the hole, a 1.2-m-long protective cover with a
locking cap was placed over the wells and grouted in place
with a gravel-cement mix. At the surface, the mix was
sloped away from the protective cover.

Wells M1 and M2 were placed on one pad 15 m apart
and 76 m downgradient of the tailings impoundment,
Wells M3 and M4 were placed on a second pad 18 m
apart and 335 m downgradient, and well M5 was placed on
a third pad 550 m downgradient. The BKG well was
located about 175 m upgradient of the tailings pile and
about 30 m upgradient of the standing water pond (fig-
ure 3). The depths from ground level to the bottom of the
PVC casing for each completion in the upgradient and
downgradient wells are shown in table 3. Also shown in
table 3 are the media (gravel or bedrock) in which the
perforated section of the casing was located and the
method of obtaining water samples. Well M3-5 never
contained water and, therefore, was not used.
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Table 3.—Background and downgradient monitoring wells!

Well ID Depth, m Completion media
MI-2 e S 241 Colluvial gravel.
L 3.4 Bedrock.
M-8 .. e 8.5 Bedrock.
M2-4 ... ... 4.0 Colluvial gravel.
M2-6 ...ttt i i 6.1 Bedrock.
M2-12 ... i i 12,5 Bedrock.
M35 i e 49 Colluvial gravel.
M310 ...ovviiii i 9.8 Bedrock.
M4-5 .. i i i 5.2 Colluvial gravel.
M4-7 i e e 7.3 Bedrock,
M4-10 ... i 9.8 Bedrock.
T 4.0 Colluvial gravel.
MB-23 ... it e 229 Bedrock,
M5-83 .......iiiiiii i 53.4 Bedrock.
BKG6 . vvivirinniinianniiias 6.4 Colluvial gravel,
BKG-20 ....covvvinniinnninnns 20.1 Bedrock.
BKG43 ........viviiivininenn 43.3 Bedrock.

1Al wells were sampled using the peristaltic method, except wells M5-53,
BKG-20, and BKG-43, which were sampled with bladder pumps.

FIELD SAMPLING AND DATA COLLECTION

SOLID SAMPLES

During well construction in the tailings, disturbed
samples were obtained using a split-barrel sampler. The
sampler was driven with a 63.6-kg hammer and consisted
of two standard 38-cm-long split tubes with 20-cm-long
spacers at the top and the middle and a 9-cm-long shoe.
It was possible to obtain a total of 116 cm (not counting
the shoe space) of sample per drive. Continuous samples
from the surface to the desired depth were collected from
most holes. Below the water table, a rivet-type basket
retainer was placed in the shoe of the sampler to aid in
sample removal. Samples were obtained in 1987 and again
in 1990 while installing additional monitoring wells (P3A,
P3B, and P3C). The samples were used for detailed
mineralogical analyses; determinations of grain size, spec-
ific gravity, clay content, and moisture content; sequential
analyses of base-metal loading; and development of a
detailed site cross section.

WATER SAMPLES FROM BAT SAMPLERS

Before the field sampling trips, BAT sampling vials
were flushed and then evacuated with an inert gas
(helium), thereby washing out all atmospheric gases, such
as oxygen and carbon dioxide. The vacuum evacuation
system was one designed and constructed by USBM staff.
After several evacuation cycles were completed, the vials
were removed from needle connections while in a vacuum,
the magnitude of which was indicated by an in-line
pressure valve. Any remaining molecules of gas in the
vials were helium, so the sampling vessel was completely

free of oxygen or carbon dioxide molecules. The system
was designed with multiple ports so that six vials could be
evacuated at once.

Collecting samples using the BAT system (figure 44)
yielded an independent airtight vial for each sample. One
"purge volume" of liquid was always withdrawn prior to
sampling and the contents discarded; this amount was a
minimum of 10 mL, which constituted the "dead volume"
inside the sampler, i.e., the volume that had resided in the
vial since the previous sampling trip. Obtaining 40 mL of
sample from the vadose zone using ceramic tips required
2 to 12 h. Thermoplastic tips, which have larger pores
than the ceramic tips, yielded over 60 mL in 15 min from
the saturated zone.

Liquid sampling vials were stored on ice for no more
than 12 h before they were opened to analyze for Eh
(using a platinum electrode) and pH (using a glass
electrode).  Electrical conductivity was not measured
because none of the available probes could measure
conductivities as high as those found in the pore waters.
Bicarbonate titrations were not performed because all
tailings pH values were already below the titration
endpoint pH. Dissolved oxygen (DO) was not measured
because the BAT sampling procedure exerts a strong
negative pressure on water during sampling and has the
potential to withdraw dissolved gases from solution. The
omission of DO for these locations in the database is
considered defensible because measured Eh was used as
input to the computer code WATEQA4F, Sensitivity studies
using this code indicated that the influence of DO on Eh
status is insignificant in waters with low pH and large
concentrations of dissolved iron.



After the Eh and pH measurements, the sample was
immediately acidified with nitric acid for element analyses
by an inductively coupled plasma emission spectra analyzer
(ICP) in the laboratory. When time allowed, duplicate
samples were collected for sulfate and chloride analyses
using an ion chromatograph (IC). Separate aliquots from
one sample run were preserved to a pH of 2 with hy-
drochloric acid for arsenic speciation analyses. Separate
aliquots from t(wo sampling trips were collected for
laboratory iron speciation analyses.

Water samples taken with the BAT sampler were not
filtered to 0.45 um for several reasons, First, for the
purpose of evaluating trends, the filtration capability of the
ceramic tips (estimated by the manufacturer to be 1 to 2
pm) would be adequate. Second, the in-line filtration
apparatus has several points where atmospheric air is
trapped prior to sampling. A priority of the experimental
design was to prevent exposure to the atmosphere during
sampling; therefore, it was concluded that one order of
magnitude of filter size (the difference between 0.45 and
2 pm) could be sacrificed to prevent compromising Eh,
pH, and other parameters critical to sulfide oxidation. To
verify this assumption, one complete sample run was
filtered to 0.45 pm after being collected with a syringe-
and-filter system (acquired after 1 year of sampling) to
evaluate how the water quality data would compare with
the data for the unfiltered (1 to 2 pm, effective) samples.
In no case did an element concentration differ by more
than 9 pct, and in most cases, differences ranged from 0 to
4 pct.

GAS SAMPLES FROM BAT SAMPLERS

Thermoplastic BAT sampler tips (which have larger
pore sizes than the ceramic tips) were installed in the
vadose zone to sample pore gas. The vials were flushed
with helium and evacuated as described above. Only in
rare instances, such as spring infiltration or installation
into the capillary fringe, did these installations yield any
liquid. The rest of the time, because these tips were in-
stalled dry, the pore entry pressure was so high that only
gas could be sampled, The vials were maintained at cool
temperatures until analyzed with a gas chromatograph.

WATER SAMPLES FROM PVC
MONITORING WELLS

Water samples from all PVC monitoring wells were
collected in two ways. A peristaltic vacuum pump con-
nected to dedicated 0.96-cm tubing was used for the
shallow wells and dedicated downhole bladder pumps were
used for the deep wells, Prior to sampling, the water
levels were measured and the wells purged. The purge

amount was generally at least two tubing volumes. How-
ever, because of the long recharge time (up to 12 h)
required for the tailings monitoring wells, only one tubing
volume was purged for these wells. Duplicate 125-mL
samples, one acidified with nitric acid to a pH of 1.5 and
the other not acidified, were collected from each well,
Prior to collection, the samples were filtered through a
prefilter, a 0.8-um filter, and a 0.45-um filter, all sep-
arated by mesh spacers. The sample containers were filled
to the top and immediately capped for minimum exposure
to oxygen.

FIELD DATA COLLECTION
Water Properties

On-site water measurements included pH, DO, con-
ductivity, Eh, and temperature. Calomel electrodes and
platinum-type electrodes with silver-silver chloride ref-
erence cells were used to measure pH and Eh. A Clarke-
type oxygen electrode and a flowthrough conductivity cell
were used to measure DO and conductivity, respectively.
When feasible, the electrodes, conductivity cell, and
temperature probe were placed in a flowthrough chamber,
and measurements were made as sample water passed
through the chamber. When there was an insufficient
amount of a sample to pass through the chamber, meas-
urements were made in a small beaker. In some samples,
alkalinity was measured using a field digital titration
procedure,

Tailings Temperature

Tailings temperature data were collected for possible
identification of high-oxidation zones and for input to
the equilibrium thermodynamic computer model used in
this research. Thermocouples were pushed into saturated
and vadose zones of the tailings at depths corresponding
to the depths of the BAT sampler tips in both clusters,
that is, 0.61, 1.2, 2.1, and 4.9 m. The thermocouples were
equipped with a surface connection to which a digital
readout device had been attached to obtain the below-
surface temperatures. Temperature data were collected at
each depth during each sampling trip. No high-oxidation
zones were identified from the temperature data.

Head and Pore Pressure

Pore pressures at the B wells and water levels at the P
and M wells were measured on each sampling trip prior to
collecting samples. At the P and M wells, depth to water
was measured with an electronic tape. All positive heads
were normalized to sea level. At the B wells, a BAT



downhole pressure transducer was used to measure pres-
sure. Prior to installing the sampling vial (figure 44), the
pressure transducer (figure 4B) was lowered down the
access tube and connected hydraulically to the downhole
septum with the same type of spring-loaded hypodermic
needle used for sampling. The BAT sampler pressure
transducer is capable of measuring negative gauge pres-
sures in the vadose zone, in the manner of a tensiometer.
Negative gauge pressures are interpreted relative to
phreatic surface where water pressure equals atmospheric
pressure. Saturated zone B wells were monitored for
positive pressure data using the same transducer.

In Situ Moisture and Density

A Campbell-Pacific Nuclear (CPN) 503 moisture den-
sity probe was used to measure moisture content and total
density over continuous depth profiles at 12 locations on
the tailings impoundment. Measurements were taken in
June and August 1990 and in March 1991 and were made
at 7.6- to 30.5-cm intervals down the access tubes. Of the
12 access tubes used with the CPN moisture density probe
at the tailings impoundment, six were BAT sampler access
tubes (stainless steel) and six were access tubes (alumi-
num) installed next to monitoring wells P1, P2, P3, P4, P5,
and P6. The CPN 503 moisture density probe has two
radioactive sources. The first is a cesium source that emits
gamma rays, or photons. The more energy reflected back
to the detector, the less the wet (solid plus liquid) density
of the soil.

The second radioactive source is composed of amer-
icium and beryllium and emits "fast' neutrons. The de-
tector only measures the return of "slow" electrons. A fast
neutron must hit something of equal mass, such as a hy-
drogen nucleus, in order to be slowed to a speed meas-
urable by the neutron detector. The usual substances in
soil that contain hydrogen atoms are water, plant organic
material (which is primarily water), and hydrocarbons.
Therefore, as long as negligible organic material and
hydrocarbons exist in the soil, the detector measurement
is correlated to moisture content. If the soil is high in
boron, there may be an interference problem because the
boron nucleus is about the same mass as a hydrogen
nucleus. Generally water is the only significant hydrogen
source in a soil and boron is rarely present.

Hydraulic Conductivity

The BAT sampler system was designed for in situ point
measurements of hydraulic conductivity. The theoretical
basis for the test is Hvorslev’s solution for a variable head
(rising or falling) test for radial flow from an open
standpipe. BAT Envitech has adapted the solution for its
system (Petsonk, 1984). In particular, incorporation of

Boyle’s gas law, which relates volume to pressure, is
necessary because the testing procedure includes positive
or vacuum pressurization, depending upon whether one is
doing an outflow or an inflow test. Other adaptations of
the formula include corrections for (1) variations in cross-
sectional area over the length of the testing apparatus and
(2) geometry of the filter tip. BAT Envitech has written
software to perform these calculations (Petsonk, 1984).

To perform a hydraulic test, a double-ended sampling
vial is used in series with a pressure transducer. The vial
is lowered down the access tube to establish hydraulic
connection with the filter tip when the spring-loaded
hypodermic needle pierces a septum in the vial and
another septum at the top of the filter tip. The filter tip
must be more permeable than the formation. For this
reason, only the completions in the saturated zone with the
large-pore-sized thermoplastic tips were used. This way,
the filter tip would not limit hydraulic conductivity. When
the vial, extension pipe, and pressure transducer unit are
charged with a known volume of water and a known
volume of positively pressurized gas, the system will force
fluid into the tailings pores when hydraulic connection is
established (outflow test). If the vial is evacuated, an
inflow test is performed. The hydraulic conductivity is
calculated repeatedly during the test until a consistent
value is reached. However, it is important to ensure that
all the water in the vial is not forced into the tailings
pores, which would force gas into the tip.  To safeguard
against this possibility, the BAT software calculates the
pressure at which all the water would be forced from the
vial and reports a pressure within 80 pct of that value as
a safety threshold at which to stop the process.

Groundwater Flow Direction and Velocity

A sodium chloride tracer test was performed to deter-
mine the groundwater flow and direction in the colluvium
downgradient of the tailings. In this test, a solution of
sodium chloride was gravity fed into well M2, and an
attempt was made to trace the salt plug downgradient on
preestablished grid lines using electromagnetic terrain
conductivity equipment. In the initial test, the salt plug
was traced only 76.2 m downstream. After that, no con-
ductivity differential could be detected. Because of this
short distance from the injection point, the results were
deemed too high because of the influence of the gravity
injection pressure (about 2.4 m of head) of the sodium
chloride solution, and a second test using a different
method was used.

In the second test, a borehole-to-surface electrical test
was performed. The field test was conducted by personnel
from the Department of Geophysical Engineering of the
Montana College of Mineral Science and Technology,
Butte, MT. For this test, a current electrode was



e

positioned within the borehole at the depth of interest and
another placed at electrical infinity, A radial array of
equally spaced potential electrodes were placed on the
surface. An electrolytic solution was injected into the zone
of interest, and as the solution plume was mobilized by the
groundwater flow, a direct current from the downhole
electrode was introduced into the conductive region. The
recorded potential differences measured on the surface
were used to compute apparent resistivity, electrical plume
length, actual plume length, and groundwater velocity.*

LABORATORY DATA COLLECTION
Water Analysis

Water samples brought in from the field were analyzed
for total silver, aluminum, barium, boron, cadmium,
calcium, copper, iron, lead, magnesium, manganese, nickel,
potassium, silicon, sodium, sulfur, and zinc on the ICP at
the USBM’s Spokane Rescarch Center (SRC) chemistry
laboratory. The ICP was used to measure concentrations
of the anions sulfate and chloride. Samples were diluted
when necessary so that concentrations fell within the linear
operating ranges of both the instruments and available
standards.

Pore Gas Analysis

A Nuclear-Chicago gas chromatograph (model 5341)
was used to measure pore gas concentrations of oxygen
and carbon dioxide. Samples were withdrawn by syringe
needle from the BAT sampling vial and injected into the
gas chromatograph through a septum port.

Column 1 was packed with a 60/80 molecular sieve to
measure oxygen, nitrogen, and composite peaks. Column
2 was filled with 80/100 Chromosorb packing material to
measure carbon dioxide and composite peaks. Experi-
ments with flow rates of carrier gas, column temperature,
and volume of sample injected were performed to yield a
range of operation wherein retention times of peaks were
consistent, peaks were well separated, and instrument
sensitivity was optimized for the concentrations of oxygen
and carbon dioxide expected.

The operating parameters used were as follows:

1. Carrier gas volume flow rate for Column 1 (oxygen)
was 20 mL/min and 4 mL/min for Column 2 (carbon
dioxide).

*Information provided in "A Geophysical Investigation to Determine
Groundwater Velocities at a Site in West-Central Washington," by
W. R. Sill and K. J, Sjostrom. Final service agreement report to USBM,
1990, 13 pp.

2. Temperature (both columns) was 30 to 32 °C.
3. Sample injection volume was 40 L.

The gas chromatograph was calibrated for each session
by an analysis of "specialty gases" of known concentrations
that were made up to requested mixes. A calibration line
was generated for both carbon dioxide and oxygen during
each chromatography session using air as one point and
either 0.5 pct carbon dioxide in nitrogen or 2.0 pct oxygen
in nitrogen as the other point.

Mineral, Chemical, and Physical Properties

Two separate mineral analyses were performed on splits
of tailings samples taken in the field. Microscopic ex-
aminations were performed by the USBM’s Western Field
Operations Center, Spokane, WA, to determine the
predominant constituents, especially the sulfide content,
and a more detailed examination was performed by the
US. Geological Survey (USGS) to determine sulfate
reduction and secondary sulfide formation in the tailings
base and subbase material. In the latter tests, polished
sections were examined using a reflected-light microscope
and a scanning electron microscope (SEM) with energy-
dispersive scanning (EDS) capabilities. Photomicrographs
were also taken.

Chemical analyses of solid samples below the tailings
were performed under contract by IGAL, Inc. A modified
sequential extraction procedure was used to help clarify
the issue of metal fixation in the sediments below the
tailings.

Grain size, specific gravity, plasticity indices, and mois-
ture content [American Society of Testing and Materials
(ASTM) designations D422-63, D854-83, D4318-84, and
D2216-80, respectively] of the tailings, organic layer below
the tailings, and volcanic ash deposit below the tailings
were determined at SRC’s soils laboratory. A Micro-
metrics Instrumentation Corp. Sedigraph 5000 particle-size
analyzer was used to determine fine grain-size distribution.

Iron and Arsenic Speciation

The speciation of iron and arsenic in an aqueous solu-
tion depends strongly on the Eh potential of the system
and also on pH (Hem, 1985). Therefore, iron and arsenic
speciation is often determined for systems where oxidation
is important. Iron speciation was performed on water
samples taken from the vadose and saturated zones of the
tailings by a USBM chemist.

Arsenic speciation for this research was performed by
IGAL, Inc., using a simultancous extraction procedure
developed by Mok and Wai (1987). Although dissolved
arsenic concentrations were too low for accurate
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measurement by ICP, trace concentrations exist in the
pore water. The Mok and Wai procedure includes an
extraction step that concentrates the sample, making it
possible to measure concentrations that were originally
below detection limits. An atomic absorption graphite

furnace was used for the final measurements of elemental
arsenic.

Because they are beyond the scope of this RI, results of
the iron and arsenic speciation tests are not included.

DATA ANALYSIS AND RESULTS

PRESSURE AND HEAD MEASUREMENTS
IN TAILINGS

Figure 5 shows gauge pressure data for the vadose
zone, plotted throughout the 4 years of the field study.
The pressures range from 0 (i.e., atmospheric pressure)
to negative pressures of slightly less than -2 m. The pres-
sures in the vadose zone are closest to atmospheric (satu-
rated) pressure conditions immediately after the spring
snowmelt during April and May. The gauge pressure data
were measured to chart relative changes in moisture
content. The matric suction in the vadose zone becomes
less negative as the moisture content increases, reaching
zero when the soil is saturated.

Gauge pressure was measured most often during 1988,
so that year is best for comparing changes in relative
moisture content in the shallow tips with those from the
deeper tips at well clusters B1 and B2. As the snow
melted in the spring, there was a 1-month lag in peak
gauge pressures (and therefore moisture content) between
the shallow tip at well Bl-4¢,* (1.2 m) and the deeper tip
at well B1-7c (2.1 m). A 1-month lag in peak readings was
also discernable between the 1.2- and 2.4-m sampling
depths at wells B2-4c and B2-8c.

The 1989 measurements for three of the four vadose
zone tips show a distinct increase in pressure, and there-
fore in moisture content, during the autumn months. This
is probably because there was significantly more rainfall in
the region during the autumn of 1989 than during the
autumn of 1988. It is not obvious why the heads at the tip
at well B1-7c did not follow this trend.

Figure 6 shows the head measurements collected in
the piezometers and BAT sampler tips in the saturated
zone. A seasonal trend is obvious for all samples, whereby
heads in the impoundment are highest in the spring after
snowmelt and lowest in the winter. A trend in head pres-
sure is apparent among the sampling locations: The most
upgradient wells in the tailings (wells P6, PS5, P4, and
B1-16) have the highest heads, followed by well B2-16,
which is farther downgradient in the tailings,

“The number following the hyphen is the sample depth in feet from
ground level. The actual measurements were made using U.S. customary
units.

GAS CONCENTRATIONS IN TAILINGS
PORE SPACES

The percentages of oxygen and carbon dioxide in the gas
phase in vadose zone pore spaces are presented graphically
in figure 7. The approximate depths from ground level at
each location are shown in table 2.

Oxygen

In wells at both well cluster B1 and well cluster B2, the
concentrations of oxygen decreased with depth (table 4).
This finding is similar to the findings of two other studies,
one in a sulfidic uranium tailings impoundment (Cherry
and others, 1980) and one in sulfidic tailings and alluvium
at the Homestake Mine in Lead, SD (Cherry and others,
1986). In the first study (Cherry and others, 1980), oxygen
concentrations at depths of 46 cm varied from 9 to 12 pct
while oxygen concentrations at depths of 274 cm varied
from 1 to 3 pct. In the second study (Cherry and others,
1986), oxygen pore gas profiles were compiled from the
vadose zone at two locations in meander deposits of
tailings and at two locations in a tailings impoundment.
At a depth of 61 cm, concentrations of oxygen varied from
5 to 20 pct, while at a depth of 244 cm, oxygen concentra-
tions varied from 1 to 10 pct.

Table 4.—Average concentrations of oxygen and carbon
dioxide as a function of depth in vadoge zone
pore spaces, percent by volume

Gas Well cluster B1 Well cluster B2
06m 12m. 06m 12m 24m
O..vvvvvin 20.0 3.1 11.0 33 3.0
COy v 0.0 0.6 0.2 1.1 28

The decrease of oxygen with depth indicates that gase-
ous oxygen is consumed in the vadose zone. Cherry and
others (1986) propose that the oxygen consumption is
represented by

FeS, + (7/2)0, + H,0 » Fe?* + 250,% + 2H*(A)

when ferrous iron (Fe?*) remains in solution, and by
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FeS,(s) + (15/4)0, + (7/2)H,0 - Fe(OH)4(s)
+ 280,% + 4H* (B)

when iron hydroxide (FeOH) precipitates from excess
ferric iron.

Carbon Dioxide

Concentrations of carbon dioxide gas in pore spaces

of the vadose zone increase with depth (table 4). These
findings are similar to those presented in Cherry and
others (1980) in a study of the vadose zone of sulfidic
uranium tailings. In this study, carbon dioxide gas
concentrations rose from 0.3 to 0.8 pet at depths of 46 cm
below the surface to 1.0 to 1.5 pct at depths of 274 cm,
Cherry and others surmised that the high carbon dioxide
concentrations in the deeper vadose zone were the result
of root respiration and the decay of organic matter, This
hypothesis offers only a partial explanation for the study
site discussed here, which is poorly vegetated by grasses
and supports brush and saplings only near the site
perimeter. Also, grass root respiration is unlikely to ex-
tend to depths of 2.4 m. Another source of carbon dioxide
could be microbial respiration (Wood and others, 1993).
A 1992 bacterial identification study at the site showed the
presence of the sulfate-reducing bacteria Thiobacillus,
acidophilic heterotrophs, and aerobes at depths of 245 to
520 cm. No carbonates were found in the mineralogical
analyses of surface samples, but near the surface, car-
bonates would have been consumed by acid carly in the
life of the impoundment.

HYDROLOGIC AND PHYSICAL
PROPERTIES OF TAILINGS

The hydrologic, physical, and chemical conditions of
the waste impoundment and the sediments immediately
beneath the impoundment strongly influence the release
and attenuation of contaminants. Water in the saturated
tailings comes from precipitation, which seeps downward
through the vadose zone; this water then flows into the
groundwater below the tailings in the hydraulically con-
nected underlying aquifer. Evidence also suggests ground-
water may flow upward into the sediments beneath and
possibly into the tailings through fractures in the bedrock
below the colluvium,

Grain-Size Distribution

The vertical and horizontal seepage rates of water
in the tailings may be influenced by the great reduction
in grain size with depth. Grain-size distributions in
composite samples at depths between 1.5 and 2.1 m and
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between 4.9 and 5.8 m near well P3 are shown in figure 8.
At well P3 and at least two other locations, a layer of
tailings containing silt-sized particles 60 to 90 pct finer
than 0.02 mm lies at the base of the impoundment. The
higher percentage of fines at increased depth may exist for
many reasons.

1. A greater portion of fines in the vadose zone may
already have been dissolved.

2. Some portion of the fines in the saturated zone may
be precipitated oxidation products from constituents
leached out of the overlying material.

3. Some of the fines in the vadose zone may have been
cemented into larger, agglomerated particles.

4. Some portion of the fines resulting from weathering
in the vadose zone may have been transported downward
with time.

The change in grain-size distribution with depth may
be correlated to the fact that water samples from the
saturated zone have higher concentrations of many key
elements than do samples from the vadose zone. Because
finer materials have more surface area available for chem-
ical interaction, which leads to more rapid dissolution,
highly soluble fines in the vadose zone have probably
already been dissolved.

It is important to note that the increase in the per-
centage of fines with depth in the impoundment will re-
duce hydraulic conductivity with depth.

Dengity and Moisture

Analysis of the data from the moisture and density
profiles shows four distinct zones of moisture in and below
the tailings. These zones are the vadose zone, the cap-
illary fringe zone, the saturated zone in the tailings, and
the saturated organic layer-silt zone below the tailings.
The average in situ moisture, expressed as weight of water
per weight of dry solids, of each zone is summarized in
table 5. Based on moisture content, the vadose zone
ranges from 1.5 m deep at well P6 to 2.7 m at well P2.
This zone was about 34 pct saturated in June and about
30 pet saturated in August, The capillary fringe zone,
identified as the zone above the water table in which the
moisture content equals or exceeds the lowest moisture
content reading below the water table, ranges from 0.9 to
1.8 m above the water table. Evaporation effects result in
upward capillary flow and a reduction of average moisture
content in the vadose zone between June and August.
Evaporation effects could be seen to a depth of about
1.5 m, after which very little, if any, moisture changes
occurred between spring and late summer.

Obtaining in situ moisture and density data at various
locations allows the identification of zones or layers with
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Table 5.—Average moisture content in various zones in and below tailings, percent1

Well ID Vadose zone Capillary fringe  Saturated zone  Qrganic silt zone?
June August June June June
= T 9.9 9.7 ND? ND ND
P2 ........oohi 12.6 11.4 27.4 26,5 ND
P3 .. 114 9.5 26.5 271 46.9
L 9.4 8.1 27.6 27.7 ND
PS .o 8.0 6.7 26.1 26.1 ND
P6 .......iiii e 8.6 7.5 221 21.9 ND
Bled ..o, 11.6 9.1 ND ND ND
B2-4............... 10.2 10.4 ND ND ND
Bl-7.............., 9.1 8.3 ND ND ND
B28............... 121 10.5 ND ND ND
B1-16.............. 9.4 7.5 26.1 26.1 ND
B216 .. oovvernnnnn 12.4 10.9 [y 20.4 ND

IMoisture content as a percentage is defined as the weight of water divided by the weight of dry solids
times 100. Moisture contents in the perched water zones identified in wells P1, P2, P5, B1-16, and B2-16

are not included in the average.,

The organic-silt zone is a zone of material below the tailings. This zone has higher moisture content

and lower density than the tailings.

3ND No data. In all cases, the access tubes for in situ moisture measurements were not driven to

these zones at these wells.

“All moisture contents above the water table were less than any measured below the water table,

excessively high or low moisture contents or densities.
These zones could indicate perched water, different ma-
terial types, layers, or other anomalies that might influence
the downward migration of contaminants,

Tailings Layering

Physical and chemical heterogeneities are not uncom-
mon in milled tailings impoundments, and this study site
was no exception. Spatial variations in physical property
values in tailings piles can result from differences in ore
mineralogy, short-term changes in milling processes,
depositional history, or weathering after deposition. The
tailings at the study site are layered, and layers differ on
the basis of color, texture, grain size, density, and moisture
content. The influence of these physical heterogeneities
on water chemistry and water movement may vary
depending on locality.

The moisture content and density profile in figure 9 at
well B2-4c shows an isolated layer of high moisture and
low density in the vadose zone about 46 ¢cm below the
surface. A tailings sample (B-2) was collected from the
surface to a depth of 61 cm through this layer near well
B2-4c and examined. In the middle of the sample was a
hardpan layer. The hardpan sample did not soften or de-
compose when it was exposed to water or concentrated
acid in the laboratory. The tailings above the hardpan
appeared to be more oxidized, much lower in moisture
content, and coarser in grain size than the tailings below
the hardpan,

The grain-size distributions of samples above and below
the hardpan are shown in figure 10. A dramatic reduction
in grain size between the top and bottom of sample B-2
can be seen. The explanation of this large difference, al-
though not clear, possibly relates to the chemical and
physical weathering of particles, or perhaps the cementa-
tion of particles above the hardpan but not below.

The hardpan in sample B-2 divides coarse and fine
tailings, probably restricts the downward flow of atmos-
pheric oxygen, and reduced water seepage velocity. This
has two effects on contaminant migration and attenuation.
First, because oxidation is required in the acid-generation
process, acid generation below the hardpan is slowed.
Second, the hardpan appears to influence pore water
quality. The data in table 6 show that concentrations of
most metals in solution increase with depth in well cluster
B1 but decrease with depth in well cluster B2, This dif-
ference may be related to the hardpan within the well
cluster B2. Because the seepage velocity is lower through
the hardpan and the finer material below, the H* ion may
be given enough residence time to consume the neutral-
izing agents resulting from silicate and aluminosilicate
mineral dissolution, resulting in more sulfide oxidation
products in solution at the 1.2-m level. At well cluster
B1, where there is no hardpan, the sulfide oxidation
products and H* appear to move frecly downward, re-
sulting in higher metal concentrations and lower pH with
depth.

Similar findings were rcported at the Heath Steele
Mine’s tailings dump in New Brunswick (Boorman and
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Table 6.—Average constituent concentrations in well clusters B1 and B2, parts per million

Constituent Well cluster B1 Well cluster B2
1.2m 21m 4.8 m 1.2m 24m 48m
pPH ... 3.76 3.73 3.49 3.16 3.74 3.89
Element:
Al o e, 55 582 2,479 552 501 147
Ca..ovvvivnnnnn. 96 466 531 428 451 458
Cu..ovvvivinnnn, 15 113 16 137 102 50
Fe vviviiiviinnen 75 811 12,864 2,018 1,194 763
Koo 12 4 59 2 6 - 4
Mg .oovviiviines 93 372 2,429 . 329 416 155.
Mn oo 2 9 159 8 12 8
Na.............. 6 36 38 17 29 17
o N 0.20 0.40 5 0.70 0.70 2
S 366 2,303 15,614 3,013 2,531 1,317
Si Lo 70 49 4 100 34 32
4 1 T 7 46 1,539 140 178 78

NOTE.—Averages are calculated on analysis of 14 to 16 different water samples taken over 2 years.
Well cluster B2 is about 46 m southeast of well cluster B1. Depths are from ground level to the center of

the porous sampling tip.

Watson, 1976). The Canadian researchers describe the
hardpan as being 5 to 10 cm thick, lying 25 to 50 cm below
the surface between the oxidation zone and the reduction
zone, and consisting of tailings cemented with iron hy-
droxides, oxides, and gypsum. In addition, the hardpan
contained high levels of copper and zinc that precipitated
as a result of chemical reactions. In 1985, the pore water
chemistry at the Heath Steele tailings dump was found to
be about the same as it was in 1976. The consistency of
the geochemistry over the 9-year period was attributed to
the effect of the hardpan (Blowes and others, 1987).

Hydrologic Characteristics

Based on three-point solutions of average potentiom-
etric elevations among wells P4, PS5, and P6, and among
wells P4, P5, and P1, the direction of the horizontal
component of flow from well P5 was determined (shown
by an arrow on figure 3). The potentiometric surface in
the direction of flow dips about 0.78 m over a distance of
about 140 m between well P6 and well P1, resulting in a
relatively flat horizontal hydraulic gradient of 5.6 x 1073
m/m. This measurement was compared with an even
flatter horizontal gradient of 6.0 X 104 m/m from well P5
to well P4, Downgradient horizontal hydraulic gradients
were 3.9 X 102 m/m and 2.2 X 10? m/m between the
shallowest piezometers of well M2 and well M4 and
between the shallowest piezometers of well M4 and well
M5, respectively. Spacings between wells in the satu-
rated tailings were inadequate for determining the verti-
cal component of the hydraulic gradient. However, in
the multiple-completion background and downgradient
wells, the vertical component of flow direction and verti-
cal hydraulic gradients were determined at wells BKG,
M2, M4, and M5 and are shown in table 7. In situ

measurements determined with the BAT system indicated
an average hydraulic conductivity in the saturated tailings
of 2 X 10° ¢m/s.

Other hydrologic properties that affect downgradient
contaminant transport at the study site are advection and
dispersion. Based on the difference in estimated horizon-
tal groundwater flow velocities (2.7 x 10 m/d in the
saturated tailings and 0.6 m/d in the downgradient aqui-
fer) (Stewart and others, 1990),° the transport of con-
taminants by flowing groundwater (advection) is much
greater in the downgradient aquifer than in the tailings.
Because the shallow aquifer at this site is narrow,
transverse dispersion is probably constrained and only
longitudinal dispersion occurs freely.

From a positive environmental aspect, the decrease in
hydraulic conductivity and the relatively flat gradient
through the tailings results in a very slow and naturally
controlled release of soluble metals from the tailings into
the downgradient environment, allowing for maximum
dilution and chemical precipitation. However, the long
periods over which the pore water is in contact with the
tailings facilitates long-term mechanical weathering and
allows completion of slower kinetic chemical reactions.

The vertical component of gradient in wells BKG and
M5 indicates an upward flow direction between the
intermediate and the shallow completions in the spring and
late summer, indicating a more continuous recharge in the
shallow alluvium. At well M2, the direction of the vertical
flow component appears to go upward in the spring and
downward in late summer, At well M4, the flow direction
is downward even during the spring recharge, possibly
indicating discharge into a bedrock fracture.

5See footnote 3.
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Table 7.—Vertical component of hydraulic gradient and flow direction for background and
downgradient multiple-completion wells.

Well ID Season Vertical flow direction Horizontal gradient, m/m
BKG-6-BKG-20 . ... .... Spring ....... Upward ...... e 0.016
BKG-6-BKG-20 ........ Late summer , , Upward .............. 0.015
BKG-20+BKG-43 . ...... Spring ....... Downward ............ 0.002
BKG-20-BKG-43 ....... Late summer .. Downward .,.......... 0.001
M2-4-M26 ........... Spring ....... Upward ............0. 0.004 -~
M24-+M26 ........... Late summer .. Downward ............ 0.007
M2-6-M2-12 .......... Spring ....... Upward ........co0tn 0.032
M2-6-M2-12 . ......... Late summer .. Upward .........c.00n 0.002
M4-5-M4-7 . .......... -Spring ....... Downward ............ 0.038
M4-5-M4-7 . .......... Late summer .. Downward ............ 0.144
M4-7-M4-10 .. ........ Spring ....... Downward ............ 0.022
M4-7-M4-10 . ......... Late summer ., . Downward ............ 0.089
M5-4-M5-23 .......... Spring ....... Upward .............. 0.092
M5-4-+M5-23 .......... Late summer ., Upward . .......ccounn 0.116
M5-23-M5-83 ......... Spring ....... Downward ............ 0.133
M§-23-+M5-53 ......... Late summer .. Downward ............ 0.132

PROPERTIES OF SEDIMENTS BELOW TAILINGS
Hydrologic and Physical Characteristics

Solid samples collected during initial drilling clearly
indicate that the tailings were deposited in a shallow,
swampy lake basin. Below the tailings is an organic-rich
silt layer 30 to 60 cm thick containing abundant snail
shells. Below this layer is a layer of silt 3 to 4.5 m thick.
Atterburg limit determinations indicate the silt has a liquid
limit of 66.7 pct and a plasticity index of 7.2. According to
the Unified Soil Classification System (U.S. Bureau of
Reclamation, 1963), this material is in the MH soil
classification group, indicating it to be inorganic silts,
micaceous or diatomaceous fine sandy or silty soil (elastic
silt). MH soils are generally very absorptive, have low dry
strength, and exhibit slow dilatancy. An EDS spectrum of
this material showed abundant silicon and detectable
amounts of aluminum, potassium, calcium, and iron, In
addition, secondary kaolinite minerals could be present.
Kaolinite is formed by weathering or hydrothermal
alteration of aluminum silicates, particularly feldspar
(Klein and Hurlbut, 1985).

Figure 11 illustrates that at a depth of 5.8 m, the silt
zone has a lower density than the tailings and contains 1,7
times more water by weight per unit volume than the
tailings. The average water content and bulk density of
the silt below the tailings at well P3 (measured in June
1989) were 46.9 pct by weight and 1.17 g/cm?, respectively.
By comparison, the average water content and bulk density
in the saturated tailings at well P3 were 27 pct and
1.60 g/cm?, respectively. Using the average bulk densities
measured in June 1989 and the average specific gravity of
solids in each zone (determined by specific gravity tests on
samples collected at the study site), the porosity for the

saturated tailings was 42.8 pct and 54.4 pct for the
saturated silt. These measurements were consistent with
the presence of the organic material underlain by lacus-
trine silt, as identified during drilling,

Mineral Analysis

To get a better understanding of the fate of the
concentrated contaminants that existin the tailings, a
detailed mineral analysis of the organic-rich layer and
other sediments below the tailings was undertaken. This
work was performed under contract by Dr. Charles Alpers
of USGS. The objective of the analysis was to determine
if the organic-rich layer was causing any attenuation of
metals migrating from the tailings. To investigate this
possibility, evidence was sought for sulfate reduction and
secondary sulfide formation in the organic-rich layer.
Several samples of the organic-rich material were prepared
and examined using a reflected-light microscope and SEM
with EDS capabilities. A description of each sample
observed by Dr. Alpers is found in appendix C. The
following is a summary of Dr. Alpers’ report to the
USBM:

Sediment samples from the field site were scanned
in two batches, one collected during 1988, the other
during 1990. The 1988 samples (eight in all) consisted
of dried powders taken from various depths while
drilling monitoring wells P 4, P 5, and P 6. Polished
sections were prepared of the fine-grained fraction of
these samples by first screening the samples at 60
mesh and then mounting the fine-sized fraction in
1-in-diam epoxy blocks. These polished sections were
examined using a reflected-light microscope and a
SEM with EDS capabilities.
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The 1990 samples were delivered in frozen state
as sections of intact, split barrel samples collected
while drilling monitoring wells B2A, P3A, and P3C.
The cores arrived wrapped in cellophane and
aluminum foil. The sampling strategy was to sample
the organic-rich layer near to the tailings-sediment
interface in each core as well as other locations at
approximately 30-cm intervals. These samples were
dried in an oven overnight at about 90° C, and then
were mounted on aluminum disks for SEM analysis.
No polished sections were prepared for the 1990
samples.

Results indicate the organic-rich layer is host to
numerous framboidal spheres composed of Fe and
S and assumed to be pyrite. This indicates a strong
reducing environment, where bacteria are able to
reduce aqueous sulfate to aqueous hydrogen sulfide,
in the presence of sufficient iron to produce solid
iron sulfides. This process is only possible where the
sulfate-reducing bacteria have sufficient sources of
aqueous sulfate, organic carbon, iron, and nutrients,
such as ammonia and phosphate (Goldhaber and
Kaplan, 1982).

Rates of sulfate reduction are highly variable;
complete sulfate removal in marine sediments can
take hundreds of years (Goldhaber and Kaplan,
1982). In some marine sites of rapid burial, sig-
nificant sulfate reduction can take place in years to
tens of years (Chanton, Martens, and Goldhaber,
1987). If none of the crucial ingredients are limiting,
sulfate reduction can proceed in relatively fast rates,
and it would be possible to produce the observed
framboids in their entirety after the disposal of the
tailings in the 1930’s and following years. However,
it is more likely that the framboidal pyrite was pre-
sent prior to the introduction of the tailings.

One possibility with respect to metal mobilization
at this tailings site is that the reducing environment
represented by the neo-formed sulfides could be a
site of metal fixation. Thus, metals leached from the
oxidized tailings could be fixed in the organic-rich,
sulfide-bearing layer.

However, other than the pyrite framboids, no
secondary base-metal sulfides were observed. If
metals leached from the tailings had been actively
reduced, coatings on the framboids consisting of
minerals such as chalcocite, covellite, and digenite
(Cu-sulfides) or sphalerite (Zn-sulfide) might be
expected. These minerals are commonly observed in
zones of sulfide enrichment, formed below the water
table in actively oxidizing base metal sulfide systems

15

(Alpers and Brimhall, 1989). Given that no such
secondary base-metal sulfides were observed, it
seems that any metals that are being fixed because
of flow through the sulfide-rich organic layer are
indeed being fixed by adsorption onto organic
material.

Chemical Analysis

To help clarify the issue of metal fixation in the sedi-
ments below the tailings, chemical analyses using a mod-
ified sequential extraction procedure were performed on
samples collected near the base of the tailings and up to
150 cm below the base. The samples were obtained dur-
ing the 1990 drilling of wells P3A, P3C, and P2A and were
taken at 15 to 61 cm below the tailings in the organic layer
(P3A), 122 cm below tailings and below the organic layer
(well P3C), 15 to 61 cm above the base of tailings and
above the organic layer (well P2A), and 15 to 61 cm below
the tailings in the organic layer (well P2A). These tests
were performed, under contract, by IGAL, Inc.

In the sequential extraction procedure used, five frac-
tions were chosen that were likely to have been affected by
various environmental conditions, These were fraction 1,
exchangeable; fraction 2, bound to carbonates; fraction 3,
bound to iron and manganese oxides; fraction 4, bound to
organic matter; and fraction 5, bound to sulfides. Six
elements (silicon, aluminum, iron, manganese, copper, and
lead) in all five fractions were analyzed by atomic absorp-
tion spectrometry. Calcium and magnesium were deter-
mined by ICP analysis.

Results of the sequential extraction tests are shown in
appendix D. These results indicate that solid-phase lead
and copper were not present to any great extent in the
organic-rich layer or silt zone below the tailings, but were
present in the base of the tailings. Lead was bound
primarily in the sulfide-residual and oxide phases at the
tailings base, and copper was bound primarily in the
sulfide-residual phase at the tailings base. Both did not
appear to be remobilizing below the tailings. Solid-phase
iron and manganese were abundant in the organic-rich
layer and silt zone below the tailings. In the organic-rich
layer, iron was present in the oxide, sulfide, and carbonate
phases, with the oxide phase being the most dominant. A
smaller, but significant, amount of iron was bound to
organic matter in this layer. Iron was bound primarily to
sulfides in the tailings base and to carbonates in the silts
below the organic-rich layer. Manganese was also bound
to carbonates. These data indicate that some of the
reduction of iron and manganese in the pore water of the
organic-rich layer and silts below the tailings is due to iron
carbonate and manganese carbonate precipitation.
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Although calcium and magnesium were present in sev-
eral phases in the organic-rich zone, they appeared most
abundant in the silts below the organic-rich layer, primar-
ily in the carbonate form. Carbonate dissolution in this
zone is probably the major source of calcium and magne-
sium in the gravel aquifer downgradient from the tailings
impoundment.

WATER QUALITY

Water quality data were collected upgradient from the
tailings (BKG wells), from the vadose and saturated zones
of the tailings (B and P wells), from below the tailings,
and from different distances downgradient of the tailings
(M wells). The results of cach sampling trip are shown in
appendix B, and the averages are summarized in tables 8
through 10. Systematic errors, such as erratic measure-
ments in all samples from one collection trip, do not
appear. At most, two samples in one sample run were
anomalous, and even in these instances, it was impossible
to determine whether the samples were mislabeled, con-
taminated, misdiluted, or improperly analyzed by the ICP.
Because no systematic reasons for rejection were identi-
fiable, rejection decisions were made on a statistical basis.
All data outliers were rejected on the basis of the Grubbs
test (Taylor, 1990) using o = 0.001. This very small value
of a ensured that only the most extreme data were re-
jected. The data were grouped by element at each sam-
pling location across all sampling trips for detection of
outliers.

Arsenic data are not reported because they were found
to be below or near detection limits for the ICP, and the
ICP does not provide accurate measurements of arsenic
near the detection limit.

Many of the variations in concentration discussed in the
following sections are described in terms of mineralogical
solubility controls, which are bricfly mentioned here
because they may influence the relative concentrations of
various constituents, Discussions will be limited to values
from the tailings and Quaternary colluvium only. Values
from the bedrock will not be discussed, except where there
appears to be an effect of bedrock waters on tailings and
shallow colluvium waters. Values from sediments imme-
diately below the tailings are discussed in the section on
"Water Quality Below Tailings."

Eh and pH

There is no apparent seasonal (temporal) variation for
either Eh or pH. The vadose zone is generally more
acidic (with lower pH values) than the saturated zonme.
Similarly, the Eh values in the vadose zone are consistently
oxidizing, whereas the saturated zonc waters are more
variable and less oxidizing, These findings were expected.
Because the vadose zone has oxygen gas in the pore
spaces, sulfides would be oxidized, producing sulfuric acid,
which causes pH to decrease. As the waters percolate
deeper, however, less oxygen but more (fresh) solids are
available to react with the acid. Thus, Eh is likely to
decrease and pH to increase. In the vadose zone, average
pH and Eh are 3.6 and 540 mV, respectively, and in the
saturated zone these values are 4.2 and 450 mV, respec-
tively. Downgradient at well M5-4, pH gradually increases
to 7.1, which is the background level shown at well BKG-6.
This is a result of hydrogeochemical reactions, dilution,
and dispersion. Downgradient, Eh averages 360 mV at
well M5-4, a value that is only slightly lower than the
average background Eh of 400 mV at well BKG-6.

Table 8.—Arithmetic means of analysis and chemical characteristics
of tailings pore water from vadose zone

B1-4 B1-7 B2-4 B2-8 Average
Eh,mvV ..... 540 540 560 520 540
pH . ... 3.80 3.70 3.20 3.70 3.60
Element, mg/L:

....... 59.00 450.00 650.00 430.00 400.00
B........ 0.25 2.10 7.10 2.90 3.10
Ba....... 0.02 0.02 0.01 0.01 0.02
Ca....... 100.00 450.00 400.00 460.00 350.00
Cd....... 0.02 0.20 0.98 1.10 0.58
Cu....... 12.00 98.00 140.00 91.00 85.00
Fe ....... 80.00 700.00 1,900.00 1,000.00 920.00
K., 10.00 4.00 2.70 5.90 5,70
Mg ...... 90.00 320.00 320.00 360.00 270.00
Mn ...... 2.00 8.30 8.10 10,00 7.10
Na....... 8.20 37.00 15.00 28.00 22,00
Nioooeees 0.30 0.32 0.34 0.45 0.35
Pb....... 0.21 0.34 0.61 0.63 0.45
S, 350.00 2,000.00 3,000.00 2,200.00 1,900.00
SioLo 63.00 48.00 94.00 33.00 60.00
Zn oo 7.20 40.00 139.00 160.00 87.00
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Table 9.—Arithmetic means of analysis and chemical characteristics of allings
pore water from saturated zone

P4 P5 P6 B1-16 B2-16 Average
Conductivity, xS/em .. ... 7,850 6,953 >10,000 NM NM NM
Eh,mV .............. 390 470 400 490 500 450
[+] 2 I 4.70 4.10 4.70 3.50 3.90 4,20
SQu,mg/L........... 23,000 NM NM 39,000 3,900 NM
Element, mg/L:
................. 70.00 990.00 18.00 2,300.00 140.00 700.00
= 22.00 19.00 64.00 28.00 2.10 27.00
Ba .......cc00viunn 0.02 0.04 0.03 0.01 0.01 0.02
Ca ..iviiiniii i 440.00 430.00 540.00 500.00 460.00 474,00
[ 2.50 4,50 0.04 17.00 1.00 5.00
Cu ....vvvvvinrenn 9.80 290.00 26.00 16.00 48.00 78.00
Fe .........ccov0n. 8,800.00 7,800.00 22,000.00 11,000.00 740.00 10,000.00
K oo eii e, 76.00 31.00 71.00 54.00 4.20 47.00
Mg ................ 1,500.00 1,100.00 4,000.00 2,000.00 150.00 1,800.00
Mn ..o e 170.00 63.00 250.00 140.00 7.80 130.00
Na ....coviinnennan 45.00 18.00 24.00 39.00 17.00 29.00
Ni oo 1.90 1.20 4.40 3.20 0.19 2.20
Pb .. 2.40 3.20 5.00 5.20 2.20 3.60
S e 7,900.00 8,00000 21,000.00 13,000.00 1,300.00 10,000.00
Sicoii i e 30.00 35.00 17.00 40.00 29.00 30.00
74 840.00 550.00 3,200.00 1,300.00 74.00 1,200.00

NM  Not measured or only one measurement made.

Sulfur, Iron, and Manganese

Iron and sulfur are presented together because they are
the predominant dissolved constituents in all tailings water
samples and the primary constituents of pyrite. The dis-
solved iron in this system is in the form of ferrous and
ferric iron. Sulfate concentrations measured by IC for sev-
eral sample runs verify the assumption that all dissolved
sulfur measured by ICP is in the form of sulfate. While
sulfate is the predominant anion in the tailings pore
waters, small concentrations of chloride were also de-
tected. Manganese is presented with sulfur and iron be-
cause manganese behaves in a manner similar to iron
chemically and mineralogically. As is iron, manganese is
influenced by redox in weathering environments (Hem,
1985); downgradient of the low-pH zone, manganese
should form oxides that scavenge other metals that are
included subsequently in the oxide mineral matrix.

The solubility of iron and sulfur minerals is controlled
by Eh and pH. Iron and sulfur concentrations with depth
are nearly identical, which reflects their high correlation as
a result of pyrite oxidation. Concentrations are generally
higher in the saturated zone than in the vadose zone. In
the vadose zone, the mean concentrations of iron and sul-
fur are 920 and 1,900 mg/L, respectively. In the saturated
zone, the mean is 10,000 mg/L for both constituents. In

the acidic environment of the impoundment, the high con-
centrations of iron and sulfur are probably attributable to
the solubility of metal sulfate minerals such as melanterite,
which is a ferrous species, and the jarosites. The pale
green color of the tailings pore water samples verifies the
dominance of ferrous iron. In the impoundment, most of
the manganese will occur as the manganous (Mn?*) and
sulfate (SO,*) ion pair. The mean values for manganese
in the vadose and saturated zones of the tailings are 7.1
and 130 mg/L, respectively.

Downgradient, sulfur attenuates to only 390 mg/L at
well M5-4, a level four times background (92 mg/L at well
BKG-06). However, iron attenuates rapidly to 0.64 mg/L
at well M5-4, a level below that of background (0.77 mg/L
at well BKG-6). The difference in attenuation between
the two is caused by the species that control solubility. In
necutral-pH environments, such as found downgradient of
the study site, the concentration of sulfur is often con-
trolled by gypsum solubility, whereas downgradient con-
centrations of iron are probably controlled by solubility of
ferric species (goethite and ferrihydrite). Manganese
attenuates to a mean of 0.42 mg/L at well M5-4, a level
that is 14 times background (0.03 mg/L at well BKG-6),
but well below the mean impoundment value of 85 mg/L.
This reduction is probably controlled by coprecipitation
with iron and by manganese-carbonate solubility.
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Lead and Nickel

Based on electronic configuration of their atoms, lead
is a representative element and nickel is a transition
element. Lead generally has a low solubility and is only
superficially attacked by dilute sulfuric acid. Lead con-
centrations may frequently be less than that predicted by
solubility conditions for a given pH. Hem (1976) believes
much of this discrepancy can be attributed to cation ex-
change. However, the strong sorbtion characteristics of
lead may also be a contributing factor. Nickel often
substitutes for iron and consequently its major source in
the tailings is probably pyrite. The mobility of both
elements tends to be low and controlled by coprecipitation
with iron and manganese oxides. The mean values of lead
and nickel in the vadose zone of the study area are 0.45
and 0.35 mg/L, respectively, and in the saturated zone are
3.6 and 2.2 mg/L, respectively. Downgradient, lead
attenuates to 0.07 mg/L at well M5-4, very near
background levels of 0.06 mg/L at well BKG-6. Nickel
levels are at or below background levels of 0.05 mg/L at
well M5-4.,

Cadmium and Zin¢

Cadmium is a common replacement cation for zinc in
the sphalerite lattice and would be released with zinc
during dissolution within the impoundment. Both are sol-
uble in dilute acidic, oxidizing conditions, such as in the
impoundment, and can have rapid reactions with these
acids when associated with other, less reactive metals as
a result of couple action. Both zinc and cadmium pre-
cipitate as hydroxides and carbonates in the presence of
equivalent amounts of alkali or are adsorbed by the soil
solid phase. The mean values of cadmium and zinc in the
vadose zone of the tailings are 0.58 and 87 mg/L,
respectively, and in the saturated zone are 5.0 and 1,200
mg/L, respectively. Downgradient concentrations at well
M35-4 are less than 0.01 and 0.09 mg/L, respectively, both
equal to or below background concentrations.

Barium and Boron

Boron is a common trace constituent in feldspars and
micas, and the borate ions are most soluble under acidic,
oxidizing conditions, such as in the impoundment. The
high boron concentrations found in the impoundment are
unusual and probably result from the acid dissolution of
borosilicates. Unlike boron, barium in the sulfate form is
extremely insoluble and will tend to precipitate in the
tailings. This is evidenced by the low concentrations of
barium in the tailings pore water samples and by the
abundance of barite in the solid tailings as determined by
SEM. Mean concentrations of boron and barium in the
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vadose zone are 3.1 and 0.02 mg/L, respectively, and in
the saturated zone are 27 and 0.02 mg/L, respectively.
Downgradient, boron attenuates to 0.29 mg/L at well M5-
4, slightly higher than background levels of 0.18 mg/L at
well BKG-6. Barium levels stay relatively constant, with
an average of 0.06 mg/L at well M5-4 and an average
background level of 0.03 mg/L at well BKG-6.

Aluminum and Copper

These metals are presented together because they
exhibit slightly different behaviors than the metals dis-
cussed previously, The behavior of aluminum is unique
because saturated zone concentrations (with the exception
of concentrations from well B1-16) are approximately
equal to those in the vadose zone. Below pH 4.5,
aluminum concentrations are limited by solubilities of
basic aluminum sulfate minerals. Between pH 4.5 and 4.9,
jurbanite may limit solubility. Aluminum solubility in
waters of pH greater than 4.9 is reported to be controlled
by the gibbsite solubility product (Nordstrom and Ball,
1986), and gibbsite is more likely to precipitate with in-
creasing pH. Gibbsite solubility may be the factor that
causes aluminum to have a relatively constant concentra-
tion across the transition zone. The mean concentration
of aluminum in the vadose zone is 400 mg/L and in the
saturated zone is 700 mg/L.. Downgradient at well M5-4,
the mean value is 0.34 mg/L, slightly higher than the mean
background level of 0.21 mg/L at well BKG-6.

Copper has concentrations similar to those of aluminum
in the saturated and vadose zones of the tailings. In view
of the fact that the tailings are from a copper mine, the
concentrations of copper are extremely low. Hem (1985)
notes that if copper concentrations are less than those
predicted by pH-Eh diagrams (thermodynamic chemical
equilibria), then the lower concentrations are probably
caused by the coprecipitation of oxides (such as iron or
manganese oxides) or adsorption onto mineral surfaces.
This appears to be the case at the study site. Assays have
shown amounts of solid copper in the 1,000 to 3,000 ppm
range in the vadose and saturated portions of the tailings,
but generally below the zone of oxidation. The mean
concentration of dissolved copper in the pore water of the
vadose zone is 85 mg/L and in the saturated zone is 78
mg/L. Mean downgradient level of copper at well M5-4
is 0.08 mg/L, which is only slightly higher than the mean
background level of 0.05 mg/L at well BKG-6.

Calcium and Magnesium

Calcium and magnesium are alkaline-earth metals.
Anorthite from the tailings and calcium carbonate from
the snail shells in the lake sediments below the tailings are
the possible sources of calcium at the field study site.
The behavior of calcium in sulfate-dominated systems is
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generally governed by the gypsum solubility product.
Magnesium is similar to and tends to mimic the chemical
behavior of calcium. Most magnesium minerals do not
precipitate unless considerably supersaturated. The major
source of magnesium in the impoundment is probably
chlorite, common in propyllitized andesite.

Calcium and magnesium have comparable concen-
trations and behavior in the vadose zone, but in the
saturated zone their behaviors diverge, That is, calcium
concentrations do not increase appreciably in the saturated
zone, whereas magnesium concentrations do. In the
vadose zone, average pore water concentrations of calcium
and magnesium are 350 and 270 mg/L, respectively. In
the saturated zone, the averages are 474 and 1,800 mg/L,
respectively. Calcium increases downgradient, but then
decreases to 390 mg/L at well M5-4. Magnesium levels at
well M5-4 attenuate only to 120 mg/L. Background levels
of calcium and magnesium at well BKG-6 average 140 and
29 mg/L, respectively.

Potassium and Sodium

Potassium is probably derived from dissolution of
potassic feldspars and sodium from the dissolution of the
albite feldspars. Sodium is an ion of small radius and is
strongly hydrated. Once sodium enters into solution, there
are no dominant precipitation reactions that control its
solubility (Hem, 1985). Potassium may be controlled by
being incorporated into clay structures and adsorbed
(Hem, 1985). Potassium concentrations are higher in the
saturated zone than in the vadose zone, like the majority
of other cations, but sodium concentrations are not. Mean
concentrations of potassium and sodium in the vadose
zone are 5.7 and 22 mg/L, respectively, and in the sat-
urated zone are 47 mg/L and 29 mg/L, respectively.
Downgradient at well M5-4, potassium attenuates to
43 mg/L, slightly above background concentrations of
2.3 mg/L at well BKG-6. Sodium concentrations increase
downgradient to an average of 53 mg/L at well M5-4,
about 2.5 times higher than the background level of
20 mg/L at well BKG-6.

Silicon

Silicon is often referred to as the dissolved oxide
species silica (SiO,) in natural waters, but its actual form
is usually one of the more hydrated uncharged ions based
on the tetrahedron form SiO*, such as silicic acid
(HSi0,).

The average concentration of silicon in the vadose
zone pore water is 60 mg/L and in the saturated zone is
30 mg/L. Silicon is the only dissolved constituent for
which average concentrations are higher in the vadose

zone. Silicon solubility at cool temperatures is generally
controlled by the mineral referred to as amorphous silica
(Hem, 1985) and may also be controlled by such alumino-
silicate minerals as kaolinite and montmorillonite. Silicon
concentrations in the two zones appear to differ in cor-
relation to the different redox status, but the thermody-
namics of silica suggest that the differing concentrations
are not a result of acid dissolution. It is possible that the
higher silicon concentration in the vadose zone results
from the sparse vegetation; Drees and others (1989) note
that production of organic complexes increases the dis-
solution rate of silica by complexing monosilicic acid.
Drees and others also note that the dynamic changes in
moisture content caused by wet-dry cycles may influence
silica concentration more than other processes, such as
dissolution-precipitation reactions. In downgradient well
M35-4, the mean concentration is 15 mg/L, or nearly equal
to the average background concentration at well BKG-6 of
14 mg/L.

Water Quality Below Tailings

To determine contaminant concentrations below the
tailings, three additional wells were drilled in the vicinity
of well P3. These wells, P3A, P3B, and P3C, were drilled
to 6.5 m (about 30 cm below the tailings), 5.9 m (base of
the tailings), and 7.1 m (about 90 cm below the tailings),
respectively. Well P3 (drilled in 1987) was drilled to
9.1 m, about 3 m below the tailings. Average concentra-
tions of metal ions in these wells are shown in table 11,

Fifty years after the tailings were deposited onto the
silts, concentrations of every element determined (except
barium) were lower in the pore water of the silts 30 to
90 cm below the tailings than in the pore water at the base
of the tailings (table 11) and much lower than in the pore
water in the core of the saturated tailings (table 9). This
could mean that water with very low concentrations of
measured constituents is flushing the porous silts and
perhaps the base of the tailings. At the P3 cluster wells
(P3, P3A, P3B, and P3C), the vertical component of gradi-
ent indicated a weak upward flow in the lacustrine sedi-
ments during the spring, a timie of high groundwater
recharge.

Another explanation for low metal concentrations in the
silts below the tailings is that tailings pore water may not
be seeping into the silts to any significant degree, but may
flow horizontally as a result of lower hydraulic conductivity
at the base of the tailings. If substantial horizontal flow
does occur at the base of the tailings, then pore water
from the tailings may eventually enter the gravels at the
edges of the impoundment, bypassing the organic material
and silts. The degree of mixing between tailings pore
water and colluvial water is unknown.
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Table 11.—Average constituent concentrations below tailings

Constituent P3B

P3A P3C P3
Conductivity, uS/em. . ... 3,448 2,456 1,630 1,788
Eh,mV .............. 230 218 181 220
HCO, 5, mg/L ....v.... 473 674 574 553
1 6.10 6.40 6.60 6.90
Element, mg/L:
Al i 1.25 0.57 0.33 0.30
B...iiiiviiiiiins, 2.60 0.69 0.56 0.30
Ba.,.......0o0nvunn 0.04 0.07 0.08 0.09
Ca......oovvvvunnn 536.00 508.00 391.00 363.00
Cu....ooviviiinanns 0.58 0.17 0.09 0.07
Fe ..........vvve 968.00 233.00 197.00 9.20
G 54.30 22.80 12.40 1.90
Mg ............... 610.00 361.00 145.00 127.00
Mn ..., 74.00 22.00 6.50 0.80
[ 65.00 38.00 25.00 38.00
Pb.............0 0.21 0.1 0.10 0.06
S . e 1,887.00 893.00 504.00 354.00
S 21.00 16.00 18.00 25.00
4 4.50 2.80 0.3 0.35

A third explanation for the low concentrations in the silts
below the tailings is that the neutralizing capacity of the
calcareous, carbonaceous silt could be inducing pre-
cipitation, which would decrease metal concentrations in
the silt pore water.

Discussion and Summary of Water Quality Data

The following statements summarize the observed find-
ings regarding the dissolved chemical constituents.

1. The vadose zone is more oxidizing (has higher Eh
values) and is more acidic (has lower pH values) than the
saturated zone.

2. Several dissolved constituents (sulfur, iron, manga-
nese, lead, zinc, nickel, boron, cadmium, magnesium, and
potassium) have higher average concentrations in the sat-
urated tailings than in the vadose tailings. Several possible
explanations exist. (a) Some redox species are more
soluble under oxidizing conditions, and the oxidation
products of easily dissolved minerals have been flushed
from the vadose zone, while the presence of remaining
sulfides continues to depress the pH; (b) the percentage of
fines increases with depth (finer materials tend to have
more surface area available for chemical interaction, and
may, therefore, cause more dissolved materials to be in
solution in the deeper saturated zone); (c) different
mineral assemblages may have been mined over time, in
which case the corresponding wastes would have depth-
dependent changes in properties; or (d) different milling
procedures might have been employed at the mill over

time, leading to corresponding depth-dependent changes
in tailings composition.

The first explanation, offered by Dubrovsky and others
(1985), is also supported by the work of Blowes and
Jambor (1990). The second explanation, regarding the
correlation to grain size, is plausible. Goss and others
(1973) demonstrated with radioactively tagged clays that
particulate material is transported downward through the
vadose zone during infiliration. The third and fourth
explanations regarding changes in depth corresponding to
changes in depositional history are also possible because
of mining (and milling) mineralogically different zones in
the ore body, accidentdl mill reagent (lime, soda ash,
crsylic acid, etc.) overdoses, and longer drying-out periods
(oxidation exposure) for some portions of the tailings.

3. Concentrations of sodium, calcium, copper, alumi-
num, and barium tend to be the same for each element
throughout both zones. Sodium, calcium, and aluminum
are generally not considered redox species; therefore, they
would not be influenced differently by the two zones.
Phase diagrams for copper and super-sulfate systems
indicate that copper is in equilibrium as Cu?* over the
range of pH and Eh encountered in both zones, Barium
generally has a very low solubility in natural waters.

4. Concentrations of silicon tend to be slightly higher
in the vadose zone than in the two saturated Zzones.
Because redox thermodynamics are not likely to control
silicon solubility, the higher solubility in the vadose zone
is likely to be the result of organic complexing from roots
and the influence of wet-dry cycles.



5. Downgradient profiles of average hydrologic and
chemical parameters at the field site are shown in fig-
ure 12. Groundwater quality dramatically improves in the
gravel downgradient of the tailings. Aluminum, copper,
iron, lead, silicon, zinc, and pH attenuate rapidly in the
first 76 m downgradient from the tailings and reach back-
ground levels of 0.3, 0.5, 0.2, 0.03, 15, 0.05 mg/L and 7.0,
respectively, at well M5, which lies 550 m from the tailings.
Potassium, manganese, magnesium, and sulfate attenuate
but do not reach background levels. Downgradient cal-
cium levels remain at the same value as the tailings pore
water, and sodium is near background levels in the tailings
pore water but increases above background levels down-
gradient. Also at well M5, pH is up to background levels
of 7.0.

6. Two key components, calcium and sulfate, were four
times more concentrated downgradient than background.
The presence of a significant concentration of sulfate in
the tailings coupled with the solubilities of secondary sul-
fate minerals are major influences on the concentrations
of many contaminants. Also, the presence of a significant
calcium source in the sediments below the tailings has a
major impact on attenuation. Iron is one of the major
constituents released during oxidation of sulfide tailings.
Downgradient attenuation of iron, as well as other trace
metals, such as copper, lead, and zinc, is extremely rapid
upon leaving the tailings.

CONCLUSIONS

This report addresses acid production, leaching, trans-
port, and attenuation of dissolved metals at an oxidized,
acid-producing tailings impoundment in north-central
Washington. This report describes the monitoring, phys-
ical properties, and on-site data collection necessary to
characterize the site and to determine existing hydrolog-
ical, physical, and geological conditions. Related reports
present multivariate statistical analyses of vadose and
saturated pore waters, and hydrological and hydro-
geochemical investigations and modeling, (Lambeth, 1992;
Williams, 1992). Forty-two monitoring wells were installed
upgradient, within, below, and downgradient of the tailings
impoundment. During a period of 3 years, pore water
samples were taken approximately every 5 weeks and
analyzed for dissolved constituents, pH, Eh, conductivity,
temperature, DO, and alkalinity. In addition, pore gas
samples were collected and water table elevation, tailings
temperature, moisture and density, hydraulic conductivity,
and groundwater flow velocity measurements were made.
Solid samples were collected for mineralogic and chemical
analyses and for determination of physical properties.

In the 50 years since deposition of milled tailings ended
at the study site, acidic conditions have developed, re-
sulting in high concentrations of dissolved heavy metals
and other contaminants in the tailings pore water. Phys-
ical observation of the solid samples collected during mon-
itoring well drilling show zones, from top to bottom, of
unsaturated tailings, saturated tailings, lake sediments
grading into volcanic silts, colluvial gravels, and fractured
bedrock. The lake sediments immediately below the tail-
ings consist of 30 to 60 cm of organic-rich material inter-
mixed with silts containing large amounts of snail shells.

These below-tailings sediments are instrumental in the
geochemical behavior of released tailings pore water. The
vadose and saturated zones in the tailings and the sat-
urated lake sediments and silts below the tailings were
verified by measured differences in moisture content and
density using a downhole neutron probe at eight locations
in the tailings pile. Two of the neutron probe profiles
showed layers of high moisture in the vadose zone, about
46 cm below the surface. A 61-cm sampling tube pushed
through one such layer showed a 2.5- to S5-cm-thick
hardpan in the center of the sample. The tailings below
the hardpan were much wetter and finer than the tailings
above. The hardpan contained high concentrations of iron
(from an acid-leaching test) and may reduce the water
seepage velocity, alter the direction of flow, and possibly
act as an oxidation barrier, slowing the pyrite oxidation
process.

Groundwater is in contact with the tailings year around.
Piezometric elevations in two multiple-completion wells
indicate that groundwater from deeper fractured bedrock
upwells into the sediments and possibly the tailings during
part of the year. Water from the sediments probably flows
into the fractured bedrock during other parts of the year.
This water is supplemented by rain and snowmelt that fil-
ter through the vadose zone. The low slope of the phre-
atic surface (5.6 X 10-3), coupled with the relatively low
hydraulic conductivity (10-* cm/s) of the tailings material,
results in extremely slow downgradient groundwater flow
rates through the tailings and long residence times for
mechanical and chemical weathering and reactivity. In
addition, grain-size comparisons between vadose and satu-
rated zone samples taken from well P3A showed eight
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times more 0.01-mm-sized particles in the saturated zone
than in the vadose zone. This may be correlated to the
large amount of dissolved constituents in the saturated
zone because finer materials have more surface area
available for chemical reaction.

SEM analysis of the tailings base and sediments below
the tailings indicate abundant barium sulfate (barite) in the
deep tailings, with detectable amounts of K-feldspar,
quartz, and iron oxide. In the organic-rich layer below the
tailings, numerous framboidal spheroids composed of iron
and sulfur and a mineral assumed to be pyrite were found
intermixed with abundant radiolarian debris, alga cysts,
and snail shell fragments. The snail shells showed only
calcium on the EDS spectrum. Given this type of reducing
environment, secondary base-metal sulfides such as chal-
cocite, covellite, digenite, or sphalerite were expected to
exist as coatings on the framboids. However, no secondary
base metals were observed with SEM in the organic-rich
layer. An EDS specttum of the silts below the organic-
rich layer showed silicon, aluminum, potassium, and cal-
cium, some of the major elements in dacitic-to-rhyolitic
glass from volcanic ash falls.

Chemical analyses of the tailings base and sediments
below the tailings indicate that solid phase lead and cop-
per are present in the base of the tailings, but not in the
organic-rich layer below the tailings, and do not appear
to be remobilizing below the tailings, At the base of the
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tailings, iron is bound primarily to sulfides and oxides, and
in the organic-rich layer, iron is bound to oxides, sulfides,
carbonates, and organic matter. In the silts below the
organic-rich layer, iron and manganese are bound primar-
ily to carbonates. Calcium and magnesium are very
abundant in this zone, also in the carbonate form.

Long-term water quality monitoring at the field study
site indicates that the vadose zone is more acidic than the
saturated zone and appears to have been more aggressively
chemically weathered than the saturated zone. Silicate and
aluminosilicate dissolution is more advanced in the vadose
zone than in the saturated zone. Because the water qual-
ity improves dramatically with depth below the tailings, the
soluble contaminants in the tailings pore water are not
penetrating the base of the tailings into the organic-rich
layer and silts below to any great extent, but are probably
being transported slowly downgradient through the tailings
and are discharged near the southeast end of the tailings
pile, where the colluvial gravels are in direct contact with
the tailings. After the water leaves the impoundment, sev-
eral processes aid in downgradient attenuation. These
include hydrogeochemical reactions, dilution, advection,
and dispersion. At a distance of 550 m downgradient from
the impoundment, all measured dissolved constituents
naturally attenuate to near-background concentrations
except calcium, magnesium, manganese, sodium, and
sulfur.
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Figure 1

Low-angle photograph of study site looking downgradient.
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Figure 8
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Figure 10
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Grain-size distribution in samples above and below hardpan. The samples were collected
in a zone extending from the surface to a depth of 76 cm near well B2-2c.
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Figure 12—Continued
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APPENDIX A.—WELL COMPLETION REPORTS FOR P, M, AND BKG WELLS

RESOURCE PROTECTION WELL REPORT
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RESOURCE PROTECTION WELL REPORT

Uydvo gecte 3re Phenomena = START CARD NO.
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RESOURCE PROTECTION WELL REPORT

Hrydroscolosic Plenomens 7 START GARD NO.
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RESOURCE PROTECTION WELL REPORT
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RESOURCE PROTECTION WELL REPORT

Hy J,ojm,l., ¢ Planomsna — START GARD NO.

PROJECT NAME: Wiy Wa ffe Mone ‘»me‘f' COUNTY: OKMO‘E& -
WELL IDENTIFICATIONNO, _P 3 B v LOCATION:SE 4 SE” % Sec [¥  Twn 2N R Z2E
DRILLING METHOD:_Hzlls ws Sile na Mu "~ STREET ADDRESS OF WELL:
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CONSULTING FIRM: INSTALLED: 5/ /20
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AS-BUILT WELL DATA FORMATION DESCRIPTION
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RESOURCE PROTECTION WELL REPORT
Ha J 03;,,,, loqi ¢ Phonoman — START CARD NO.
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WELL IDENTIFICATIONNO. P 3 C LOCATION: SE 4 SE 14 Sec 1§ Twn 33N R 22E.
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DRILLER: o
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AS-BUILT WELL DATA FORMATION DESCRIPTION
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RESOURCE PROTECTION WELL REPORT

Wipdro ﬂ“’(“’ « Plonomena ~ START CARD NO.

PROJECTNAME: _Mine Lo Asbc Manesemat county: _©Kanoqan
WELL IDENTIFICATIONNO. _ P v LOCATION:SE %4 SE % Sec L§ Twn33W R 22E
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ram:_ U, S P WATER LEVEL ELEVATION:
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CONSULTING FIRM: INsTALLED: __ /0] 6 [§ 7
REPRESENTATIVE: DEVELOPED:
AS-BUILT WELL DATA FORMATION DESCRIPTION
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RESOURCE PROTECTION WELL REPORT

H 4‘, 0,9¢0 losic Phen smann — START CARD NO.
PROJECT NAME: M( o u)au-k Monaeemeat COUNTY: 0/(0/1 pg&r.
WELL IDENTIFICATIONNO, __ £~ 5~ v LOCATION:SE. 44 SE~ 14 sec |8  TwniIN R22E
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REPRESENTATIVE: DEVELOPED:

AS-BUILT WELL DATA FORMATION DESCRIPTION
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RESOURCE PROTECTION WELL REPORT

ECY 050-12 (Rev. 11/89)

u?,{w 5‘”' v Hhomomonc — START CARD NO.
PROJECT NAME: _V}inn 1) P nege man: county: O Kenoqam
WELL IDENTIFICATION NO. P A LOCATION: S6. 14 ié_% Sec |8  Twn33M R2ZE
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RESOURCE PROTECTION WELL REPORT

PROJECT NAME: J\1; ka

Hudessoloyie
! (Z)as . lame e inan

/‘\MOM&L -

START CARD NO.

county: OKo4, 6 q0un

WELL IDENTIFICATION NO. /4’7 / , Y oox
DRILLING METHOD: X% Fofry O] Dhwri hole Tia mmar.

LOCATION:M E 14 MEYys sec 1 Twn33M R22E

STREET ADDRESS OF WELL:
DRILLER:
AR U .S -DM, WATER LEVEL ELEVATION:
SIGNATURE: GROUND SURFACE ELEVATION:
CONSULTING FIRM: wstaLep: 7/ /87
REPRESENTATIVE: DEVELOPED:

AS-BUILT

WELL DATA

FORMATION DESCRIPTION

1o H .
Ue 4+ mpgx é;f:k/GL
|

LS4
Lopl-gi :—5-52’0‘
| ,
| m,,zg?i«é‘e'CL

|
-

)

|

|

|
1

f' zuga od Seebon 1g 2w
N e 2"0,9, Lw'f/,l\ -Dl%tﬁ

M ,{ 0{ gjp /,‘n es Cijan
s M "’LJ
Lyfees gL S rd

(aft‘*’ﬂz pue s 4

%?;?:g%ﬁ ;o.g:g e foms IC

TA:; 15 « Mu/'/'/;/p(amlp(‘ﬁ{
well iw whiek Fhiree I
pre wews p«&uz( W He
5mw. Lwté a’l( Uoww»f'
Gocls (7 n'<18 ) Th

cheliectsd :%”A"“j bowe s
Vﬁw‘/’ jn eacl \wedS

e Wi eld , lwép 7
o~ 5""’77(j tp Mkmﬂ” én mi/er/'/(,

bufin}z'm/}nim“ Cornmon

p .

il by Seroihe witha
Surar i,bbk; ;

_w' p,ss)é(. weafhaced
ardesle bedeock

} !
23 ~%0

-
|
|
|

Q_;,_C,/ _Coarse Rugul o :

Colfuuial Mﬂ'/"i""(\, Cobblos T
apt “p o ore foot and eoa :
|
|
|
-
I

MJe;i-k,

alk 5/\»—’ ov ¢
Matrix 15 259\& Sond 4 pedf -
broum. S'/‘/'/Z

6 - ll’ysub angelon 4o %L&(-:
‘/\ch'—WW(L W&{i "’\3 a~ $r9cl |

it ok Sl el
rMJom Mc/t{;-é. codbles, T
/Y)afr;)( erm"&ins Sone - |

mmim»-l

,’Z aZu:/IA

6&"‘1, hade/m.Lsi

Porp/,.d,;.] LC((H’CK»

T T T [

14
SCALE: 1"=___ [0

ECY 050-12 (Rev, 11/89)

PAGE OF




RESOURCE PROTECTION WELL REPORT

H Jroym/ i pkmﬂomﬂwa’
PROJECT NAME: m:u« Wo e Mana e mont

weLL ibenTiFicaTionNo, _ M 2 (12, j/o' Y /)

START GARD NO.
counTy: OKevoge
LoGATION:NE 14 W ¥ 14 sec 11 Twi33M R 226

DRILLING METHOD: ofary w/ 0".;"\ hole HYpmmer STREET ADDRESS OF WELL:
DRILLER:
FAm_ U- S ¥ m WATER LEVEL ELEVATION:
SIGNATURE: GROUND SURFACE ELEVATION:
CONSULTING FIRM: INSTALLED: ___ 717187
REPRESENTATIVE: DEVELOPED:
AS-BUILT WELL DATA FORMATION DESCRIPTION
/
6 — O
motenial. Co lglp; akl one 4o fun

AT

SAme as M, PUC
s /(wo’f{ a:(‘,‘:L/ﬂs
ML&W-L7 >, e 441,

FLeet of Gudesi Madeix s
amepdin. an J;/t./[z,*,gaﬂj <+
~ brdum 5//-}

[O,- /7’ Coerse Sande gravel.
o Zobbles ., to Governk |
”\&L"S ere I‘OM MMMtJ/""L"l

1o -2 ,/m_] (oa,y,JM

om ook bou § o S/Mﬁ’l

+u \ro\» 7‘-4«—» M
527 3s /’ch//u,m fo Cvance uplu
T o
1% Z‘n

n ,,f Lt §/a"(1 14 Ala(k"/’b

oo d Sand - Grawed i ponded |

andes /.k MA' W‘ld 5fclm¢cn/s F

s bt J O@wl /O#OV Seduans |

SCALE: 1"m__ |0’ PAGE

OF

ECY 050-12 (Rev. 11/89)

-+
COQVSL JLJM Coflso ,.Ie
I
1
I
-
|
|
1

h«nr\or 5'-(- MucLT
')aa-(fa. nliww\- Z\ﬂ' bac// !
?/\.U*v\ G«\-CLJ' , od Fix is T
1L\> Conrse Suﬁmw:

I

worc| 4 Sand . Groek 7S T
|

|

|

%CWZ’/wfijWNﬂzA

----4-

45



-
o

RESOURCE PROTECTION WELL REPORT

be, -
Njeb/«ara / NO Mert 4

PROJECT NAME: /Mt Lus

A

WELL IDENTIFICATIONNO. _/*1 3

(L6, Y2

START CARD NO.

COUNTY: _/) [{omo9smer
L, LOCATION: (Pv D1 Sec20  Twn 33N R 22F
DRILLING METHOD: 47 £ I?-l:n’v w) Down thile Hemmse STREET ADDRESS OF WELL:

DRILLER:
FIRM:__ [JSP . WATER LEVEL ELEVATION:
SIGNATURE: GROUND SURFACE ELEVATION:
CONSULTING FIRM: sTaLLeD: _/1Y/8%
REPRESENTATIVE: DEVELOPED:
AS-BUILT WELL DATA FORMATION DESCRIPTION
T ! T
cHw?
: Le Vé)i;, w!b“‘L o~7/Coavs«= ﬁo//uuim of |
'[p,,ur W andesi Lok ¢bw«i»x}'
! (30(?'”" ' \ ® l,_lu are ur oA !
! povis, (Do ‘ {
- 7 g
| pe ﬁ«n‘( a Ml’wa-,f éw* Ma{’l"x 1< SM&C{ @7«/(’&\. I
e 6,,.’»-\'5‘“0’/" p‘lc et Col(uu'«w W'I’H— Nc/"l/ww" f‘H"T

i r;‘\ A‘]‘:

) ,,MJ
 st”

N\

d
/P/azﬁ‘

tnsdilied of J@r’“‘ "b
6" 32/,

4 l_/Z,' [ oarse £m u.pb‘\-dnl'};.(g:
o Hvivem~ mlmxa{ - VOMcL(/e |
L woel matrix — Some Sond .

' } g, ;
]2 -)3 C.,,u,._l JW / .
Semd S sib

]

I
-
|
[

!
|
!

3'- 238" Qowrdod =1 " prem

s ,Jw‘k‘
., i“ ﬁf‘ﬁ’& . J T
. T m a,ncfzs;l(/ metn sedimort |
:ha,l’ l ﬁm&jfuavl with Séﬁw (STA ?):
{ ;? ,oc((. Co ’-')llS Gilta Ol
o : 9;:”[ éAt;:?wmiﬂ’r ?kwoses clow-»wm@.:
T , -
: L3 - ?3’/2/’ A"';‘yb«“—" 4o Subenculo :
! m Loifl, conrse Fandswa
: bow ‘Jg‘g a.,\A @LW;, %L(Stc-(ﬂ«?:
L/O T A,(), ‘.A)A-("\ (ﬂUJ a 4—@ ﬁ@r{’ deﬂl‘-{'( IQ\A I}V\_ "’+
Ao OATr AT
: 15,
L M3-f . Downker
|
' M2-3L% 16.7'GL
-
:
|
|
4

R B

/of
* ECY 050-12 (Rev. 11/69)

SCALE: 1" =

PAGE OF




RESOURCE PROTECTION WELL REPORT
H Jv—o wlogic }01\9'“"‘“"“ -
PROJECT NAME: "J «'MJ 8 S Mensgomont

WELL IDENTIFICATION NO.

My G7%4,32)

DRILLING METHOD: iz Zbr;; wf Lywnbite Lo nnsa

START CARD NO,

COUNTY: _0 Ko 09Gm.r
LOCATION: AW Y4 Ahb_% Sec 20 Twn3JW R21E
STREET ADDRESS OF WELL:

DRILLER:
ArM:__ U S Bom WATER LEVEL ELEVATION:
SIGNATURE: GROUND SURFACE ELEVATION:
CONSULTING FIRM: & INSTALLED: —2/1c/§ 7
REPRESENTATIVE: DEVELOPED:
AS-BUILT WELL DATA FORMATION DESCRIPTION
T T
l((/("l\l'(Cw
: (:oM(NL( {3}7 Lok r :
I I
: o' il :
S6ma G Mmi, pve (—6' old +a‘,,|h3s T
' Lots F’u‘u(, d‘ J”V“‘ @L'/' [ond Oneryy Shnesvm J :
Ty 17h2¢ 432" 2 deposide = Browm s
ond Silt WHL mwnovjrlﬂ( _1'_
‘(‘V‘aaé P |
| | 4yt ///-—ZQI @w Jz&//klmZnur», "Z :
! = aTeile ond 7««&»/ A high
‘, i 000 03| gl 500 ﬁm"“"k A 7 L /1L a»lf 17 1 g%l(é’\ |
20 :’— 2 g '}% &?;/ J rom s S - -T
t ° / f |
= g 20 b rowrdod +s suh )
les' L B TP 26,2 M:fa;m prale &
1o gl e b laolsith condes
) ho Baé “'“.dg? e n nild WGA ﬁ,7 5, Zen : ,{ﬂu&\—l
r PRAYAR IS Uy 689 | Fon f,wf fan he weathoed pula bi
ZOT /'4/1’2;# ,V’ T
' 5 ZC/-}’L) 6 a,,nc/m/le. :
I ‘—____/‘
| paythk'] b*ﬂ/wcz :
l
!
%::_ pu. WAkY lewe/s T
e [
| v /
| My =172 /Oﬁ{ Ce ll
] ~ ¢ce
| f’nl/—jc( = /gfo II
™ 5 ol et
oy -32 > 1 T
|
a ! :
| : I
: L
SCALE: 1"=_ /0 ' PAGE OF L

ECY 050-12 (Rev, 11/89)

47



T eSS Sl = TmR T T

RESOURCE PROTECTION WELL REPORT

6’403!0 bomic pAmow\-ﬂha - STARTCARDNO.
PROJECT NAME: Y LOAsde Manase rw-nf county: _O /< O O v
WELL IDENTIFICATION NO. =~ S 1S LOCATION: A1 Aed) Y se020 Twn23pN RZ22[5
DRILLING METHOD: D7 #ec ¥ &tir j0ter el STREET ADDRESS OF WELL:
DRILLER:
FIRM: _(£-5:13 .M, WATER LEVEL ELEVATION:
SIGNATURE: GROUND SURFACE ELEVATION:
CONSULTING FIRM: INSTALLED: ___/0/23 /87
REPRESENTATIVE: DEVELOPED:
AS-BUILT WELL DATA FORMATION DESCRIPTION
L /}
W oS IR oSy O il
Lo
, o|lo¥ " [ uis 1% ]7 /” 2/_é/ 5/ 7/0,,éam,(_ Jo dene

Peap |l in wl\‘“‘*"‘b“'* b

-
I
I
|
o ohe 1 puc wora- ¢3! 5,” | poa- ‘/’O’WJ‘MZ'A
-+
]
I

‘ p‘auvf In 'H»O—S”""“ k)l;droua&(ao( -Fo 5‘er0%00°!
leoeds RISy 32t gt bperd o4 easy Shildi.

- l ha Loste
| /(/c e 2’ Fifta~ rublle cro anilosie
Te 1Y Ad sefiong  |or omdegite bouldy J} i rov tawel )

ulAzQLW 2760 thast |90 0,10 //,,,J/dykju‘? EndesifeT
Lo feckry sbls. T 1T 55

: f As<?f
1V opre 450 ¢ . M{,Aj M./@,

/

dowk |

"ﬂ ol " e d sff 'HL T
ij (:;'(m 5.,{26%) Z““; fé( ’ “t‘éf :
Lovo Jovobe. Fhrfugh 2.

swels ¢ o A-A«m-nr« /oo -—//L #/w/7¢7
%:64 $he PV Lot 143 {l"k‘/k
D(,((,(“’LJ z/f ho é"j (

3

A\
o
4
3%
5
-&
133
%
]

M{&f,—/&g)"'

; /e 169" Sofln 7C‘-cé5n4¢ |
, e i s dallec /i\ Mr,/z f‘“

[
f
{
| el
rt4 '
T Ao, wades Ll P,’,/':% c’o:«ﬁwl’ /}g/a

A chl/uU dov b & < Juo! :
m: oL Coced v MS—IA / ! / : T
M () F5 19 6 Plmg wes plectd tn MSAD (67 99 ethod Lonte
! ~, ! ; wed J
'MGéW): [0 6L /:; ’}{ﬂm{)/’") w,kﬁ\ i derle f‘w7 on/;yufl :
"el I Ye »r |
Tos (195 T T e et T
1 s Xy Wi )
! ??m v é!.,)et_& Gin !
n btodfmﬁ- i
SCALE: 1"=_ 50 ' PAGE___| oF_ |

* ECY 050-12 (Rev. 11/89)



RESOURCE PROTECTION WELL REPORT

;JJ g /E e f’ Ao R 4 START GARD NO.
proJECTNAME; PiRe WA N Menwsenmant COUNTY: _ D Keno Jat
WELL IDENTIFICATIONNO. 8 K G (21, L6, 142) LOCATION:SE % SE— Sec /8 Twn 33N R22.6
DRILLING METHOD:_Dikscd G iy I?oJm vy STREET ADDRESS OF WELL:
DRILLER:
FIRM:_(t $-B.m. WATER LEVEL ELEVATION:
SIGNATURE: GROUND SURFACE ELEVATION:
CONSULTING FIRM: INSTALLED: _ /0/20/87
REPRESENTATIVE: DEVELOPED:
AS-BUILT WELL DATA FORMATION DESCRIPTION
T T
k¥ | Tho 12wl " dirdt vooks Clapseil)
4 O-2 irt4 roots (12pSe
n[”_(c V,M ¢0MWL~U \»"L\ I u)L‘GL . F

-oao-

Fhree ’/L/ pve e

2’.20/ Pvoum 5'//’)‘ /’““‘J"‘”“G(r

|

|

W '3\),,’)5’ {

o p%_} V(Iu(,( in he \SC—VN ‘U&, — S Ao“za(w(’ o :
™ A . Soma SubCrfuale;

LT o Sy B TR ey v e i

' | & 0“‘ ’V:l ! ﬂe / ¥ ﬂ 007’7(;1)144 yvu:ﬁl Wt & /7 '

1/ "wel gﬁw»t have 2/ lo Igz.,fn&ttf |

cb lul')'w‘ Ay Sectims wlich ae 270 20528" a5 et bt /t?*" :

T{‘"’}‘?ﬁs d t\m ! v/m-] sbis | muc/g ‘ /)’@% "‘7’ aed
'%c’l"') 5”1 Snfer CAJN\ ’Ue Z’Z"« :

I ] pabﬁ M7 M/ |

: ijd e 26’—‘—% Bmlvw /4 ? f.lz\c{leah

jov -::—- ‘?’2%;;53.:&; ﬁ,ﬁuh“"" 5‘{1“ /)VL w’:”':h::;i*y a»cics.l« §u7-—Z\ﬂ4 G /_;_
L[ . e

) 5 || s e wmﬂawajk 4n’ s shobbed fo hovd g
H’Wl(/ )QMtﬁ Swrhing wifk 4 5“"3» ?u,e,\ enclesi !

/5 _:_ J Wa‘ ¥ i blow'» Lm 5<[ i //D L/M&( C‘\JQ“‘H_

] D‘-[, icuﬂtf ’#V j

' —e et 1k shlled (0 Blem2) perpkvfrv‘ coifh 'ﬂff'w ot :

= L P

200 _:_ ‘ (& / 5,2 :Q D -121 fat#w\“/ (/WA_ w.l[:—
T Ao, Waler /606[3 ““J‘i"/jw/ﬂ W praset NPT mc/ side U/’ffﬂ“ [
P [ 7}/[(;(.:4 g ONGL-IH2, g “ben eide

| / lica ih Fraci. T7 Py -/1 I

[ oren E sl it el e o :
+ Blle-bb = 17 b Ml}m:ﬂ & e, mk e aoe |

A > 137 123 1YY’ 45/” Adﬁ%ﬁ«j

+ ,?c.s /t' |

: /(/a/ /s p\r({ﬁj) §,/¢54l( W/ :

L m Jod P roda, L

SCALE: 1"=__ 54 '
ECY 050-12 (Rev. 11/89)

oF__/

PAGE /

49



50

APPENDIX B.—WATER QUALITY DATA FROM SAMPLING TRIPS

BETWEEN 1988 AND 1991
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APPENDIX C.—SUMMARY OF SEM ANALYSIS OF SAMPLES TAKEN
AT BASE OF AND BELOW TAILINGS

1988 SAMPLES

Photomicrographs from SEM examination of polished
sections of the 1988 and 1990 samples were taken. The
actual photographs are not included in this RI but are
available by contacting any of the authors. In this ap-
pendix, the SEM observations are described for each sam-
ple, including observations that were not recorded by
photomicrograph.

Sample P-4-A (From well P4, 0 to 7.6 cm below tailings.)

Barium sulfate (the mineral barite) is a fairly common
constituent of the fine-grained fraction of sample P-4-A.
Numerous barite grains, 2 to 8 pm in size, in a matrix rich
in iron, aluminum, and silicon (perhaps an amorphous pre-
cipitate?) were observed. Elsewhere on this sample, rec-
tangular gypsum crystals were found, as was a grain of
iron-titanium oxide in a matrix of silica.

Sample P-4-B (From well P4, 7.6 to 22.9 cm below tailings.)

Framboidal spheroids composed of iron and sulfur were
observed in sample P-4-B. Although the mineralogy of
these spheroids has not been determined, they are as-
sumed to be pyrite based on results of numerous other
studies (e.g., Berner, 1970). The framboids range in diam-
eter from about 6 to 20 pm. Regardless of the total size
of the framboidal spheroid, the individual spheres within
the spheroid seem to be about 0.8 um in size.

Sample P4-C (From well P4, 22.9 to 254 cm below
tailings.)

In addition to pyrite framboids about 8 ym in diameter,
this sample contained a mottled mass of iron oxide. Also,
various shell fragments (snails?) showed only calcium dur-
ing EDS and are probably composed of calcium carbonate.
A grain with titanium and silica and in a silica matrix
probably represents sphene trapped in quartz,

Sample P-5-A (From well P5, 0 to 2.5 cm below tailings.)

This sample contained a relatively large (100 to 200 pm)
grain cluster of gypsum (calcium and sulfur on EDS).
Barite grains in an iron-aluminum-silicon matrix were also
observed.

Sample P-5-B (From well P5, 2.5 to 12.7 cm below tailings.)

Barite was observed in sample P-5-B, as well as a
limited amount of framboidal pyrite particles about 8 um
in diameter.

Sample P-5-C (From well P5, depth unknown.)

A grain of galena was found in quartz. Antimony and
silver were detected by EDS on this grain, indicating the
presence of a sulfosalt mineral. No pyrite framboids were
found. Some gypsum, with a lead-rich core, was observed.

Sample P-6-A (From well P6, 0 to 10.1 cm below tailings.)

Pyrite framboids of about 8 pm in diameter were found
in this sample. One of the framboids has an oxidation
rind in which the relative amount of sulfur is less than in
the central portion. Because the rind is thinner, about
2 pm, than the spatial resolution of the SEM for semi-
quantitative analysis, it seems probable that the rind is
composed entirely of iron (iron oxide, or goethite). Also
found in this sample were grains of barite and an iron-
titanium oxide (ilmenite?).

Sample P-6-B (From well P6, 10.1 to 229 cm below
tailings.)

This sample contains a cluster of three pyrite fram-
boids, each about 16 to 18 um in diameter, plus a num-
ber of dispersed, individual spherules, which may sim-
ply represent a larger framboid damaged during sample
preparation.

1990 SAMPLES
Sample B2A-1 (From well B2A, base of tailings.)

This sample appears to represent the bottom of the tail-
ings, just above the organic layer. Barite was quite abun-
dant. Also detected were K-feldspar, quartz, and iron
oxide (gocthite?). No sulfide grains, algae, or diatoms
were seen in this interval.



Sample B2A4-2 (From well B2A, 2.5 to 7.6 cm below
tailings.)

Pyrite framboids from 2 to 6 um in diameter were seen
in this interval at the top of the organic layer. Radiolarian
debris was abundant.

Sample B24-3 (From well B2A, 30.5 to 40.6 cm below
tailings.)

Volcanic ash was abundant in this interval. Excessive
charging of the sample during SEM examination precluded
taking any informative photographs,

Sample P3A-1 (From well P3A, 25 to 7.6 cm below
tailings.)

Some pyrite framboids about 6 um in diameter were
observed along with abundant radiolarian debris and algal

cysts (crysophytes).

Sample P34-2 (From well P3A, 30.5 to 40.6 cm below
tailings.)

Only a few pyrite framboids (about 4 ym in diameter)
were found along with abundant algal cysts and radiolarian
debris.

Sample P34-3 (From well P3A, 483 to 58.4 cm below
tailings.)

No pyrite framboids were found in this sample, which
apparently consists largely of devitrified volcanic glass. An
EDS spectrum of the material showed silicon, aluminum,
potassium, and calcium, some of the major elements in

dacitic-to-rhyolitic glass from volcanic ashfalls typical of

the region.
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Sample P3C-1 (From well P3C, base of tailings.)

This sample presumably contained oxidized tailings
from above the organic layer. Fine-grained barite was very
abundant, along with iron oxides. No sulfide minerals
were found. No SEM photomicrographs were taken be-
cause of excessive charge buildup on the sample.

Sample P3C-2 (From well P3C, 0 to 7.6 cm below tailings.)

At the top of the organic-rich layer, abundant pyrite
framboids, 10 to 20 pm in diameter, were observed. Some
algal cysts were also found.

Sample P3C-3 (From well P3C, 7.6 to 152 cm below
tailings.)

This sample had abundant algal cysts (chrysomonads,
which are the resting state of algae), possible volcanic glass
shards, well-formed pyrite framboids, and abundant diatom
and radiolarian fossils,

Sample P3C4 (From well P3C, 60.9 to 76.2 cm below
tailings.)

A tan-to-brown clay-rich layer locked to be composed
of partially devitrified volcanic glass. An EDS spectrum
showed abundant silica, with detectable aluminum, potas-
sium, calcium, and iron, as would be expected from rhy-
olitic to rhyodacitic ashfalls.

Sample P3C-5 (From well P3C, 76.2 to 94 cm below
tailings.)

Volcanic glass shards and algal cysts were observed by
SEM, in this brown-to-tan layer, but no pyrite framboids.
Macroscopically, some green material was present, perhaps
a live colony of moss or algae.
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APPENDIX D.—RESULTS OF CHEMICAL ANALYSES OF SOLID SAMPLES
COLLECTED AT BASE AND BELOW TAILINGS

(Analyses conducted by IGAL, Inc., Cheney, WA)

IGAL, Inc.

111 College Ave.
Cheney, WA 99004
July 17, 1991

Si (ppm)
Sample No. II IIY Iv \4
P2A18 57 61 392 323 560
B2A20 5 103 405 278 365
P2A20 15 150 495 580 1210
P2A22 78 395 680 435 805
P3A19 125 520 428 1520 835
P3A22 62 265 860 605 1030
P3C24 15 75 218 125 362

Al (ppm)
Sanmple No. IT III IV \'
P2A18 35 232 733 365 2450
B2A20 15 270 1065 220 1075
P2A20 3 45 260 535 1760
P2A22 <1 95 518 420 2350
P3A19 <1 36 180 1570 575
P3A22 <1 105 522 920 6320
P3C24 <1 12 50 5 80

Page 1




s

Fe (ppm)
Sample No,. I IT ITI IV \4
P2A18 50 428 1910 282 8450
B2A20 15 370 1368 150 6420
P2A20 7 5570 9710 4905 6750
P2A22 3 2750 2015 860 4675
P3A19 5 35 210 3300 1960
P3A22 8 1080 1075 1510 4225
P3C24 3 4750 1335 135 450
Mn (ppm)
Sample No. I II ITI Iv v
P2A18 12 1 8 <1 30
[B2A20 15 6 18 1 8
P2A20 120 210| 105 25 32
[P2A22 72| 80 <1 45 16
P3A19 60 122 30 60 3
P3A22 5 42 8 2 <1
P3C24 5 225 35 <l <1
Mg (ppm)
Sample No. I II IIT Iv v
P2A18 201 16 62 35 1890
|B2A20 162 20 33 21 542
P2A20 1980 632 225 120 1250
P2A22 1285/ 250 95 58 1025
P3A19 860 1750 232 73 175
P3A22 1015 1460 260 105 520
P3C24 180 3350 220 35 65

Page 2
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Ca (ppm)
Sample No. I I1 ITT Iv \
P2A18 506 37 530 83 145
B2A20 490 110 492 70 67
P2A20 14500 29450 5525 1610 1040
P2A22 12250 8320 1915 5018 1850
P3A19 16780 150850 27420 805 2885
P3A22 19660 119950 16935 3522 2615
P3C24 8840| 324300 53230 42 1730

Cu (ppm)
Sample No. I IT III Iv \'A
P2A18 10 52 12 18 405
B2A20 1 40 5 7 170
P2A20 1 4 1 3 48
P2A22 <1 3 1 6 45
P3A19 <1 4 1 4 34
P3A22 <1 4 1 6 46
P3C24 <1 3 1 2 8

Pb (ppm)
Sample No. I II IIT Iv \Y
P2A18 1 18 45 4 35
B2A20 . <1 20 38 3 27
P2A20: <1 <1 <1l <1 5
P2A22 <1 <1 <1l <1 4
P3A19 <1 <1 <1l <1 2
P3A22 <1 <1 <1 <1 <1
P3C24 <1l <1 <1 <1 <1

I Exhchangable

IT Bond to carbonates

III Bond to iron and manganese oxides
v Bond to organic matter

v Bond to sulfides

Page 3
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